跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 22:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:竇加年
研究生(外文):Chia-Nien Tou
論文名稱:鈣在菠菜中的營養生理功能
論文名稱(外文):The Nutritional-Physiological Function of Calcium in Spinach (Spinacia oleracea L.) Plant
指導教授:林鴻淇林鴻淇引用關係
指導教授(外文):Hong-Chi Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:74
中文關鍵詞:菠菜水耕硝酸態氮銨態氮
外文關鍵詞:spinachcalciumhydroponicsnitrate nitrogenammonium nitrogen
相關次數:
  • 被引用被引用:3
  • 點閱點閱:391
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
菠菜 (spinach),學名Spinacia oleracea L.,在台灣為主要蔬菜之一,由於其營養豐富,含有大量的礦物質、維生素及膳食纖維等成分,故在營養上頗受注目,為一兼具有多種食品營養價值的蔬菜,又加上栽培容易,生育期短,為秋冬季重要的佳蔬。
菠菜是喜好硝酸態氮的作物之一,對於鈣的需要量也較大,本試驗為探討菠菜是否可以利用銨態氮,在酸性環境下是否可以生長,及鈣是否可以改善菠菜的生長,討論氮與鈣對於菠菜生長及其化學組成的影響,與鈣在菠菜植株中的重要性。試驗方式為施用三種不同氮型的氮肥(硝酸態氮、混合態氮及銨態氮),及三種鈣濃度 (0 mM、5 mM及10 mM),做複因子試驗,共有九種處理,六重複,且使用水耕的方式種植於人工氣候室(日夜溫分別為20℃/15℃),使變因侷限於氮源種類和鈣源之有無,在水耕條件下,其他因子包括pH值都易於控制在所設定的特定狀態下,可得到氮源、鈣源與生長生理反應間較清楚的因果關係。在水耕的條件下種植四星期,植體採收後,測定株高、主根長、鮮重及乾重等,分析項目則有葉綠素、全醣、澱粉、氮、磷、鉀、鈣、鎂、鐵、錳、銅及鋅。
結果顯示菠菜於有硝酸態氮處理時生長好,於銨態氮處理時生長差。處理中添加鈣時都會改善生長,鮮重、乾重及含水量增加,全醣及澱粉蓄積量較多,葉綠素的濃度會被稀釋。在菠菜化學組成方面的影響,鈣的添加改善生長,使得大量元素的吸收增加,對於微量元素的影響則不明顯。總言之,菠菜為喜好硝酸態氮的作物,銨態氮太多時會對其造成毒害;無論氮的型態為何,有鈣都會改善生長;鈣有助於養分離子的吸收;鈣可以消除菠菜營養生理中的不利因子,在菠菜中具有重要的營養生理功能。

Spinach (Spinacia oleracea L.) is one of the main vegetables in Taiwan. It contains a large amount of minerals, vitamins, and diet fibers. So it is considered to be very nutritious. Spinach can be easily cultivated and its growth period is short. It is a very good vegetable crop in autumn and winter on Taiwan.
Spinach has been considered as a nitrate preferring plant, and at the same time, it requires quite a lot of calcium. This experiment is aimed at the elucidation of the suitability of ammonium nitrogen of spinach, also its growth in acidic environment, and calcium requirement for growth. The experiment is to elucidate the relationships of the growth of spinach and the chemical compositions in spinach especially to determine the importance of calcium in spinach physiology. The plants were grown hydroponically in phototron (day/night temperature is 20oC/15oC) by 3 x 3 factorial design with three levels of nitrogen factors, and three levels of calcium factors, six replications. Spinach plants was grown hydroponically for four weeks. The following characteristic features were determined: plant height, taproot length, fresh weight, dry weight. The contents of chlorophyll, total sugar, starch, nitrogen, phosphorus, potassium, calcium, magnesium, iron, manganese, copper, and zinc, were determined.
Experimental results have shown, that the growth of spinach is better with nitrate nutrition, and worse with ammonium nutrition. The calcium has improved the growth. The fresh weight, dry weight, water content, the amount of total sugar and starch of calcium treated plot are increased; but chlorophyll concentration decreased, the absorption of macronutrients increased. Spinach is a nitrate preferring plant; under higher dosage of ammonium nutrition, ammonium toxicity symptoms can be observed. Whether nitrate or ammonium nutrition, calcium can improve the growth of spinach. The spinach absorbed more nutrients when the calcium is present, it seems that calcium can eliminate unfavorable factors in spinach physiology. It is obvious that the experimental results have shown that calcium for a normal nutritional-physiological function of the spinach plant.

摘要‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥Ⅰ
Abstract‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥Ⅲ
目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥Ⅴ
表目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥Ⅶ
圖目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥Ⅷ
照片目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥Ⅸ
附表目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥Ⅹ
前言‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1
材料與方法‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥6
結果與討論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥16
一、不同營養液處理對菠菜生長、型態及營養狀態之影響‥‥‥‥16
1. 菠菜的株高及主根長‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 16
2. 菠菜的鮮重及乾重‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 16
3. 菠菜的含水量‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 20
4. 菠菜地上部與地下部的比值‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 20
5. 菠菜的形態特徵‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 20
6. 菠菜的葉綠素濃度‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 26
7. 菠菜全醣與澱粉的濃度及量‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 26
二、不同營養液處理對菠菜化學組成之影響‥‥‥‥‥‥‥‥‥‥30
1. 總氮的濃度及量‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 30
2. 硝酸態氮的濃度及量‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 32
3. 銨態氮的濃度及量‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 34
4. 不溶性氮的濃度及量‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 34
5. 磷的濃度及量‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 35
6. 鉀的濃度及量‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 37
7. 鈣的濃度及量‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 39
8. 鎂的濃度及量‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 41
9. 鐵的濃度及量‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 43
10. 錳的濃度及量‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 44
11. 銅的濃度及量‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 48
12. 鋅的濃度及量‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 50
結論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥52
參考文獻‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥53
附錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥60

何念祖、孟賜福。1987。植物的微量元素。植物營養學原理,pp. 160-
194。上海科學技術出版社。
吳美鸞。1991。硝酸氮和銨氮的氮素比例對於菠葉的生長和其成份的影
響。中華農學會報,新156:56-68。
吳美鸞。1994。硝酸氮和銨氮的氮素比例和GA3對於營養期菠菜的影響。
中華農學會報,新167:61-74。
吳美鸞。1995。在不同硝酸氮和銨氮比例下生長的菠菜,其切離菠葉以
H2O、PEG6000或NaCl處理時的成份變化。中華農學會報,新170:89-
103。
杜朋。1992。果蔬汁飲料工藝學。農業出版社,北京。
沈再發、許淼淼、徐森彥。1989。養液栽培技術講習會專刊第二輯。台灣
省農業試驗所鳳山熱帶園藝試驗分所。
沈再發、許淼淼。1992。養液栽培技術講習會專刊第四輯。台灣省農業試
驗所鳳山熱帶園藝試驗分所。
沈再發。1980。菠菜。台灣農家要覽,園藝作物,蔬菜篇。豐年社,台北
市。
高德錚。1989。本土化蔬菜水耕栽培技術:動態浮根式水耕系統之開發與
利用。台灣省台中區農業改良場。
高德錚。1995。養液栽培技術講習會專刊第五輯。台灣省台中區農業改良
場。
張庚鵬、張愛華。1997。蔬菜作物營養障礙診斷圖鑑。台灣省農業試驗
所,台中,台灣。
連程祥譯。1989。鈣與植物生長和老化的調節。中國園藝,35:97-102。
陳文孝。1978。蕃茄開花結實期間鈣營養之生理特性。中國園藝,24
(4):157-167。
黃鴻玉。1975。無機營養對菠菜之代謝生理及化學組成之影響。私立中國
文化學院實業計畫研究所農學組碩士論文。
黃鴻玉。1981。不同氮素營養對菠菜生長及有機酸代謝之影響。南亞學
報,1:109-126。
黃涵、洪立。1988。台灣蔬菜彩色圖說。台灣大學園藝系,台北市。
Aikman, D. P., and G. Houter. 1990. Influence of radiation and
humidity on transpiration: Implication for calcium levels
in tomato leaves. J. Hort. Sic. 65:245-253.
Barker, A. V., and H. A. Mills. 1980. Ammonium and nitrate
nutrition of horticulture crops. Hort. Rev. 2:395-423.
Barker, A. V., N. H. Peck, and G. E. MacDonald. 1971. Nitrate
accumulation in vegetables. Ⅰ. Spinach grown on upland
soils. Agron. J. 63:126-129.
Blacquiere, T., R. Hofstra, and I. Stulen. 1987. Ammonium and
nitrate nutrition in Plantago lanceolata and Plantago Major
L. ssp. major. Ⅰ. Aspects of growth, chemical composition
and root respiration. Plant Soil. 104:129-141.
Bremner, J. M., and C. S. Mulvaney. 1982. Salicylic Acid-
thiosulfate Modification on Kjeldahl Method to Include
Nitrate and Nitrite. In “Methods of Soil Analysis Part 2
Chemical and Microbiological Properties” A. L. Page ed.,
2nd ed. pp. 621-622. Academic Press, New York.
Broaddus, G. M., J. E. York, and J. M. Hoseley. 1965. Factors
affecting the levels of nitrate nitrogen in cured tobacco
leaves. Tob. Sci. 9:149-157.
Chung, R. S., H. Y. Hu, and L. H. Chen. 1989. The changes of
nitrate-nitrogen during the growth of tobacco plant. 2.
Effect of nitrogen fertilizer application rate. Bulletin of
Taiwan Tobacco Research Institute, Taiwan Tobacco and Wine
Monoploy Bureau. 30:25-36.
Clark, R. B. 1983. Plant Genotype Difference in the Uptakes
Translocation, Accumulation, and Use of Mineral Elements
Requires for Plant Growth. In “Genetic Aspects of Plant
Nutrition”, R. Saric and B. C. Loughaman. eds. pp. 49-70.
Martinus Nijhoff Publisher, Boston.
Cox, W. J., and H. M. Reisenauer. 1973. Growth and ion uptake
by wheat supplied nitrogen as nitrate, or ammonium, or
both. Plant Soil. 38:363-380.
Davis, J. M., W. H. Loescher, M. W. Hammond, and R. E.
Thornton. 1986. Response of potatoes to nitrogen form and
to change in nitrogen form at tuber formation. J. Amer.
Soc. Hort. Sci. 111:70-72.
Evans, H. J., and G. J. Sorger. 1966. Role of mineral elements
with emphasis on univalent cations. Ann. Rev. Plant
Physiol. 17:47-76.
Franceschi, V. R., and H. T. Horner. 1980. Calcium oxalate
crystals in plants. Bot. Rev. 46:361-427.
Goyal, S. S., O. A. Lorenz, and R. C. Huffaker. 1982.
Inhibitory effects of ammonium nitrogen on growth of radish
plants. Ⅰ. Characterization of toxic effect on NH4+ on
growth and its alleviation by NO3-. J. Amer. Soc. Hort.
Sic. 167:125-129.
Haynes, R. J., and K. M. Goh. 1978. Ammonium and nitrate
nitrogen by plants. Biol. Rev. 53:465-510.
Ho, L. C., and P. Adams. 1994. The physiological basis for high
fruit yield and susceptibility to calcium deficiency in
tomato and cucumber. J. Hort. Sic. 69:367-376.
Hohlt, H. E., D. N. Maynard, and A. V. Barker. 1970. Studies on
the ammonium tolerance of some cultivated solanaceae. J.
Amer. Soc. Hort. Sci. 95:345-348.
Ikeda, H., and T. Osawa. 1980. Comparison of adaptability to
nitrogen sources among vegetable crops. Ⅱ. Growth response
and accumulation of ammonium and nitrate-nitrogen by leafy
vegetables cultivated in nutrient solution containing nitrate, ammonium and nitrate as nitrogen sources. J. Jap. Soc.
Hort. Sci. 48:435-442.
Keeney, D. R., and D. W. Nelson. 1982. Modified Griess-Ilosvey
Method In “Method of Soil Analysis Part 2 Chemical and
Microbiological Properties” 2nd ed., A. L. Page. pp. 684-
687. Academic Press, New York.
Marschner, H. 1995. Mineral Nutrition of Higher Plants, 2nd ed.
pp. 38-41. Academic Press, NewYork.
Marshner, H. 1986. Mineral nutrition of higher plants. Academic
Press. London.
Maynard, D. N., and A. V. Barker. 1969. Studies on the
tolerance of plants to ammonium nutrition. J. Amer. Soc.
Hort. Sic. 94:235-239.
Maynard, D. N., and A. V. Barker. 1974. Nitrate accumulation in
spinach as influenced by leaf type. J. Am. Hort. Sci.
99:135-138.
Mills, H. A., A. V. Barker, and D. N. Maynard. 1976. Effects of
nitrate accumulation in spinach. J. Amer. Soc. Hort. Sic.
101:202-204.
Mills, H. A., and J. B. Jones Jr. 1979. Nutrient deficiencies
and toxicities in plants. Nitrogen. J. Plant Nutr. 1:101-
122.
Mozafar, A. 1996. Decreasing the NO3 and increasing the vitamin
C contents in spinach by a nitrogen deprivation method.
Plant Foods for Human Nutrition. 49:155-162.
Muhammad, S., and K. Kumazawa. 1974. Assimilation and transport
of nitrogen in rice Ⅰ. 15N labelled ammonium nitrogen.
Plant Cell Physiol. 15:747-758.
Murphy, J., and J. P. Riley. 1962. A modified single solution
for determination of phosphate in natural water. Anal.
Chem. Acta. 27:31-36.
Olday, F. C., A. V. Barker, and D. N. Maynard. 1976. A
physiological basis for different patterns of nitrate
accumulation in two spinach cultivars. J. Amer. Soc. Hort.
Sci. 101:217-219.
Ota, K., and Y. Yamamoto. 1989. Promotion of assimilation of
ammonium ions by simultaneous application of nitrate and
ammonium ions in radish plants. Plant Cell Physiol. 30:365-
371.
Peterson, L. A., E. J. Stang, and M. N. Dana. 1988. Blueberry
response to NH4-N and NO3-N. J. Amer. Soc. Hort. Sic. 113:9-
12.
Raven, J. A. 1977. H+ and Ca+2 in phloem and symlast:: relation
of relative immobility of the ions to the cytoplasmic
nature of the transport paths. New Phytol. 79:465-480.
Reet, M. M., C. D. Raper, JR., L. C. Tolley, and W. P. Robarge.
1985. Tomato response to ammonium and nitrate nutrition
under controlled root-zone. J. Plant Nutr. 8:787-789.
Santamaria, P., A. Elia, and F. Serio. 1998. Nitrogen
nutrition, yield and quality of spinach. J. Sic. Food
Agric. 76:341-346.
Santamaria, P., A. Elia, F. Serio, M. Gonnella, and A. Parente.
1999. Comparison between nitrate and ammonium nutrition in
fennel, celery and Swiss chard. J. Plant Nutr. 22:1091-1106.
Santamaria, P., A. Elia, G. Papa, and F. Serio. 1998. Nitrate
and ammonium nutrition in chicory and rocket plants. J.
Plant Nutr. 21:1779-1789.
Santamaria, P., and A. Elia. 1997. Producing nitrate-free
endive heads: Effect of nitrogen form on growth, yield, and
ion composition of endive. J. Am. Soc. Hort. Sci. 122:140-
145.
Schrader, L. E., D. Damska, P. E. Jung Jr., and L. A. Peterson.
1972. Uptake and assimilation of ammonium-N and nitrate-N
and their influence on the growth of corn. Agron. J. 64:690-
695.
Sorensen, J N., A. S. Jahansen, and N. Poulsen. 1994.
Influence of growth conditions on the value of crisphead
letter 1. Marketable and nutritional quality as affected by
nitrogen supply, cultivator and plant age. Plant Foods for
Human Nutrition. 46:1-11.
Tremblay, N., and A. Gosselin. 1989. Growth and nutrient status
of celery seedlings in response to nitrogen fertilization
and NO3:NH4 ratio. HortSci. 24:284-288.
Vierstra, R. D. 1993. Protein degradation in plants. Annu. Rev.
Plant Physiol. Plant Mol. Biol. 44:385-410.
Warnke, D. D., and S. A. Barker. 1973. Ammonium and nitrate
uptake by corn (Zea mays. L.) as influenced by nitrogen
concentration and NH4+/NO3- ratio. Agron. J. 65:950-953.
Zornoza, P., and M. Gonzalez. 1998a. Varietal specificity in
growth, nitrogen uptake, and distribution under contrasting
forms of nitrogen supply in spinach. J. Plant Nutr. 21:837-
847.
Zornoza, P., and M. Gonzalez. 1998b. Intraspecific differences
in nitrogen assimilating enzymes in spinach under
contrasting forms of nitrogen supply. J. Plant Nutr.
21:1129-1138.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top