跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/05 02:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許家禎
研究生(外文):Hsu Chia Chen
論文名稱:IIR埃根濾波器設計
論文名稱(外文):Design of IIR eigenfilters
指導教授:貝蘇章
指導教授(外文):Soo-Chang, Pei
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:129
中文關鍵詞:埃根濾波器濾波器設計時域及頻域限制無限頻率響應有限頻率響應
外文關鍵詞:eigenfilterfilter designtime and frequency domain constraintIIRFIR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
埃根逼近法近來被廣泛地用來設計許多不同的濾波器。這個方法基本上是計算一個實數、對稱、恆正的矩陣的特徵向量而能有效地得到所需的濾波器係數。數位濾波器大致上有兩種形式:IIR(無限脈衝響應)及FIR(有限脈衝響應)。埃根逼近法目前已被用在線性相位的FIR濾波器,Hilbert轉換器,數位濾波器,及複係數FIR濾波器等的設計上。
由於IIR濾波器有極點,它的設計一般說來與FIR濾波器不同。整篇論文將著重於使用埃根逼近法來設計IIR濾波器。我們可以清楚地看見埃根逼近法在增加時域或頻域的限制上,是個非常方便的方法。
從第二章到第四章,我們簡述這個方法並將其延伸來設計有時域或頻域限制的濾波器如凹谷濾波器,Nyquist濾波器,Partial Response濾波器等等。我們也可以設計有線性限制的濾波器。在這些章節中,我們推導這些限制及濾波器轉換函數之間的關係,並且使用埃根逼近法來計算答案。在第五及第六章,我們推導埃根逼近法,並將之延伸以設計複係數及對數域IIR濾波器。在第七章,我們提出一個FIR的新架構,並將其最佳化的方法。最後在第八章,我們總結這篇論文並且提出一些未來可能的研究方向。
The eigenfilter approach is widely used to design kinds of digital filters recently. This method is based on the eigenvector computation of an appropriate symmetric, positive-definite matrix, and the solution can be found efficiently. There are two major kinds of implementation of digital filters: IIR (Infinite Impulse Response) and FIR (Finite Impulse Response). The eigenfilter approach has been used to effectively design linear phase FIR filters, FIR Hilbert transformers, and digital differentiators, and complex FIR filters.
With the existence of denominator, design of IIR digital filters is somewhat different from that of FIR filters. This dissertation is focus on digital IIR filter design based on eigenfilter approach. The effectiveness of this approach of adding time and frequency domain constraints is presented.
In chapter 2 to 4, we introduce this approach and extend it to design filters with time and frequency domain constraints such as notch filters, Nyquist filters, and partial response filters, or even the filters with linear constraints. We formulate the transfer function according to the constraints and implement the formulation with eigenfilter approach. In chapter 5 and 6, we formulate IIR complex filters and IIR log filters and apply eigenfilter approach to implement the filters. We will also present a new method to construct FIR filter with sub-filters optimally in chapter 7 and conclude this dissertation and suggest our future works in chapter 8.
CHAPTER 1 INTRODUCTION
CHAPTER 2 REVIEW OF IIR EIGENFILTER APPROACH
2.1 INTRODUCTION
2.2 DESIGN OF IIR EIGENFILTER
2.2.1 Problem Formulation
2.2.2 Iterative Phase Updating
2.2.3 Choice of the Weighting Function
2.2.4 Consideration of Filter Stability
2.2.5 Summary of Design Procedures
2.3 CONCLUSION
CHAPTER 3 DESIGN OF IIR EIGENFILTERS WITH TIME AND FREQUENCY DOMAIN CONSTRAINTS
3.1 INTRODUCTION
3.2 IIR EIGENFILTER WITH PRESCRIBED MAGNITUDE RESPONSE AND CONSTANT GROUP DELAY
3.2.1 Introduction
3.2.2 Problem Formulation
3.2.3 Experiment Examples
3.2.4 Conclusion
3.3 DESIGN OF IIR NOTCH FILTER
3.3.1 Introduction
3.3.2 Problem Formulation
3.3.3 Design Procedures and Experiment Remark
3.3.4 Experiment Examples
3.4 DESIGN OF IIR NYQUIST FILTER
3.4.1 Introduction
3.4.2 Problem Formulation
3.4.3 Design Procedures and Experiment Remark
3.4.4 Experiment Examples
3.5 DESIGN OF PARTIAL RESPONSE FILTER
3.5.1 Introduction
3.5.2 Problem Formulation
3.5.3 Design Procedures
3.5.4 Experiment Examples
3.6 CONCLUSION
CHAPTER 4 DESIGN OF IIR EIGENFILTERS WITH LINEAR CONSTRAINTS
4.1 INTRODUCTION
4.2 GENERAL PROBLEM FORMULATION
4.2.1 Formulation of General Constraint Matrix
4.2.2 General Design Procedure
4.3 DESIGN OF LOWPASS FILTER WITH MAXIMALLY FLAT CONDITION
4.3.1 Problem Formulation
4.3.2 Experiment Examples
4.3.3 Conclusion
4.4 DESIGN OF DIFFERENTIATOR WITH LINEAR CONSTRAINTS
4.4.1 Problem Formulation
4.4.2 Experiment Examples
4.4.3 Conclusion
4.5 CONCLUSION
CHAPTER 5 DESIGN OF IIR COMPLEX EIGENFILTERS
5.1 INTRODUCTION
5.2 DESIGN FORMULATION OF COMPLEX FILTERS
5.3 DESIGN REMARKS
5.4 EXPERIMENT EXAMPLES
5.5 CONCLUSION
CHAPTER 6 DESIGN OF IIR LOG EIGENFILTERS
6.1 INTRODUCTION
6.2 DESIGN FORMULATION OF LOG FILTERS
6.2.1 Problem Formulation
6.2.2 Design Remarks
6.2.3 Experiment Examples
6.3 DESIGN OF COMPLEX LOG FILTERS
6.3.1 Problem Formulation
6.3.2 Experiment Examples
6.4 CONCLUSION
CHAPTER 7 DESIGN OF FIR FILTERS WITH ARBITRARY BUILDING BLOCKS
7.1 INTRODUCTION
7.2 ORTHOGONALITY PRINCIPLE ON FIR FILTER DESIGN
7.3 DESIGN FORMULATION
7.4 EXPERIMENT EXAMPLES
7.5 CONCLUSION
CHAPTER 8 CONCLUSION AND FUTURE WORKS
REFERENCE
[1] P. P. Vaidyanathan and T. Q. Nguyen, “Eigenfilters: A new approach to least-squares FIR filter design and applications including Nyquist filters,” IEEE Trans. Circuits & Syst., vol. CAS-34, pp. 11-23, Jan. 1987.
[2] S. C. Pei and J. J. Shyu, “Design of FIR Hilbert transformers and differentiators by eigenfilter,” IEEE Trans. Circuits Syst., vol. 35, pp. 1457-1461, Nov. 1993.
[3] S. C. Pei and J. J. Shyu, “Eigenfilter design of higher-order digital differentiators,” IEEE Trans. Signal Processing, vol. 37, pp. 505-511, Apr. 1989.
[4] T. Q. Nguyen, “The design of arbitrary FIR digital filters using the Eigenfilter method,” IEEE Trans. Signal Processing, vol. 41, pp. 1128-1139, Nov. 1993.
[5] S. C. Pei and J. J. Shyu, “Complex eigenfilter design of arbitrary complex coefficient FIR digital filters,” IEEE Trans. Circuits Syst.-II: Analog and Digital Signal Processing, vol. 40, no. 1, pp. 32-40, Jun. 1993.
[6] S. C. Pei and J. J. Shyu, “Design of 1-D and 2-D IIR eigenfilters,” IEEE Trans. Signal Processing, vol. 42, pp.962-966, Apr. 1994.
[7] X. Zhang and H. Iwakura, “Design of IIR digital filters based on eigenvaule problem,” IEEE Trans. Signal Processing, vol. 44, pp. 1325-1333, Jun. 1996.
[8] F. Argenti and E. Del Re, “Design of IIR Eigenfilters in the frequency domain,” IEEE Trans. Signal Processing, vol. 46, no. 6, pp. 1694-1698, Jun. 1998.
[9] S. Sunder and V. Ramachandran, “Design of recursive differentiators with constant group-delay characteristics,” Signal Processing, vol. 39, pp. 79-88, 1994.
[10] A. T. Chottera and G. A. Jullien, “A linear programming approach to recursive digital filter design with linear phase,” IEEE Trans. Circuits & Syst., vol. CAS-29, pp. 139-149, Mar. 1982.
[11] W. S. Lu, S. C. Pei, and C. C. Tseng, “A weighted least-squares method for the design of stable 1-D and 2-D IIR digital filters,” Trans. Signal Processing, vol. 46, no. 1, pp. 1-10, Jan. 1998.
[12] Tian-Hu Yu, S. K. Mitra, and H. Babic, “Design of linear phase FIR notch filters,” Sadhana, vol. 15, lss.3, pp. 133-155, Nov. 1990, India.
[13] A. Nehorai, “A minimal parameter adaptive notch filter with constrained poles and zeros,” IEEE Trans. Acoust. Speech, Signal Processing, vol. ASSP-33, pp. 983-966, Aug. 1985.
[14] T. S. Ng, “Some aspects of an adaptive digital notch filter with constrained poles and zeros,” IEEE Trans. Acoust. Speech, Signal Processing, vol. ASSP-35, pp. 158-161, Feb. 1987.
[15] J. K. Liang, R. J. Pefigueriredo and F. C. Lu, “Design of optimal Nyquist, partial response, Nth band and nonuniform tap spacing FIR digital filters using linear programming techniques,” IEEE Trans. Circuits Syst., vol. 32, pp. 386-392, Apr. 1985.
[16] X. Zhang and H. Iwakura, “Design of FIR Nyquist filters using Remez exchange algorithm,” IEICE Trans., vol. J79-A, no. 8, pp. 1378-1384, Aug. 1996.
[17] K. Nakayama and T. Mizukami, “A new IIR Nyquist filter with zero intersymbol interference and its frequency response approximation,” IEEE Trans. Circuits Syst., vol. CAS-29, no. 1, pp. 23-34, Jan. 1982.
[18] S. J. Maeng and B. G. Lee, “A design of linear-phased IIR Nyquist filters,” IEEE Trans. on Selected Areas in Comm., vol. 13, no. 1, pp. 167-175, Jan 1995.
[19] E. R. Kretzmer, “Generalization of a technique for binary data communication,” IEEE Trans. Comm. Tech., pp. 1966-1969, Feb. 1966.
[20] R. W. Lucky, J. Salz and E. J. Jr. Weldon, “Principles of data communication,” New York: McGraw-Hill, 1968.
[21] T. Chen and P. P. Vaidyanathan, “Design of IFIR eigenfilters,” Proc. IEEE Int. Symp. Circuits & Syst., Singapore, pp. 264-267, Jun. 1991.
[22] T. Chen, “Unified eigenfilter approach: With applications to spectral/spatial filtering,” IEEE Int. Symp. Circuits & Syst., Chicago, IL, pp. 331-334, May 1993.
[23] S. C. Pei, C. C. Tseng, and W. S. Yang, “FIR filter designs with linear constraints using the eigenfilter approach,” IEEE Trans. Circuits & Syst. II, vol. 45, no. 2, pp. 232-237, Feb. 1998.
[24] Y. C. Lim, J. H. Lee, C. K. Chen, and R. H. Yang, “A weighted least squares algorithm for quasi-equiripple FIR and IIR digital filter design,” IEEE Trans. Signal Processing, vol. 40, pp. 551-558, Mar. 1992.
[25] T. Q. Nguyen, “The eigenfilter for the design of linear-phase filters with arbitrary magnitude response,” IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 1981-1984, May 1991.
[26] W. K. Pratt, Digital Image Processing, New York: Wiley, 1978, Chapter2.
[27] B. Yegnanarayana, “Design of ARMA digital filters by pole-zero decomposition,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-29, pp. 433-439, Jun. 1981.
[28] C. E. Schmid, “Design of IIR/FIR filters using a frequency domain bootstrapping technique and LPC method,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-31, pp. 999-1006, Aug. 1983.
[29] T. Kobayashi and S. Imai, “Design of IIR digital filters with arbitrary log magnitude function by WLS technique,” IEEE Trans. Acoust., Speech, Signal Processing, Sig. Proc., vol. 38, pp. 247-252, Feb. 1990.
[30] T. Kobayashi, K. Fukushi, K. Tokuda, and S. Imai, “Design of stable two-dimensional IIR digital filters with arbitrary magnitude function,” IEEE Conf. Acoust., Speech, and Signal Processing, ICASSP-92., vol. 5, pp. 93-96, 1992.
[31] S. C. Pei and J. J. Shyu, “Design of arbitrary FIR log eigenfilters,” IEEE Trans. Circuits & Syst.-II: Analog and Digital Signal Processing, vol. 41, no. 5, pp. 361-364, May 1994.
[32] L. R. Raginer and B. Gold, Theory and Application of Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1989.
[33] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1989.
[34] T. W. Parks and J. H. McClellan, “Chebyshev approximation for nonrecursive digital filters with linear phase,” IEEE Trans. Circuit Theory, vol. CT-19, pp.189-194, 1972.
[35] V. R. Algazi and M. Suk, “On the frequency weighted least squares design of finite duration filters,” IEEE Trans. Circuits & Syst., vol. CAS-34, pp. 80-95, 1987.
[36] M. Okuda, M. Ikehara, and S. Takahashi, “Fast and stable least squares approacj for the design of linear phase FIR filters,” IEEE Trans. Signal Processing, vol. 46, no. 6, Jun. 1998.
[37] G. A. Merchant and T. W. Parks, “Efficient solution of a Toeplitz-plus-Hankel coefficient matrix system of equations,” IEEE Trans Acoust., Speech, Signal Processing, vol. ASSP-30, pp. 40-44, 1982.
[38] T. Saramaki, “Design of FIR filters as a tapped cascaded interconnection of identical subfilters,” IEEE Trans. Circuits & Syst., vol. CAS-34, no. 9, pp. 1011-1029, Sep. 1987.
[39] A. Y. Kwentus, Z. Jiang, A. N. Willson Jr., “Application of filter sharpening to cascaded integrator-comb decimation filters,” IEEE Trans. Signal Processing, vol. 45, no. 2, pp. 457-467, Feb. 1997.
[40] M. Renfors and T. Saramaki, “Recursive Nth-band digital filters- Part I: design and properties,” IEEE Trans. Circuits & Syst., vol. CAS-34, no. 1, pp. 24-39, Jan. 1987.
[41] M. Renfors and T. Saramaki, “Recursive Nth-band digital filters- Part II: design of multistage decimators and interpolators,” IEEE Trans. Circuits & Syst., vol. CAS-34, no. 1, pp. 40-51, Jan. 1987.
[42] J. J. Din, “Derivation and properties of orthogonal transform,” the dissertation for the degree of master at National Taiwan University, Taipei, Taiwan, R.O.C, Jul. 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top