|
[1] P. P. Vaidyanathan and T. Q. Nguyen, “Eigenfilters: A new approach to least-squares FIR filter design and applications including Nyquist filters,” IEEE Trans. Circuits & Syst., vol. CAS-34, pp. 11-23, Jan. 1987. [2] S. C. Pei and J. J. Shyu, “Design of FIR Hilbert transformers and differentiators by eigenfilter,” IEEE Trans. Circuits Syst., vol. 35, pp. 1457-1461, Nov. 1993. [3] S. C. Pei and J. J. Shyu, “Eigenfilter design of higher-order digital differentiators,” IEEE Trans. Signal Processing, vol. 37, pp. 505-511, Apr. 1989. [4] T. Q. Nguyen, “The design of arbitrary FIR digital filters using the Eigenfilter method,” IEEE Trans. Signal Processing, vol. 41, pp. 1128-1139, Nov. 1993. [5] S. C. Pei and J. J. Shyu, “Complex eigenfilter design of arbitrary complex coefficient FIR digital filters,” IEEE Trans. Circuits Syst.-II: Analog and Digital Signal Processing, vol. 40, no. 1, pp. 32-40, Jun. 1993. [6] S. C. Pei and J. J. Shyu, “Design of 1-D and 2-D IIR eigenfilters,” IEEE Trans. Signal Processing, vol. 42, pp.962-966, Apr. 1994. [7] X. Zhang and H. Iwakura, “Design of IIR digital filters based on eigenvaule problem,” IEEE Trans. Signal Processing, vol. 44, pp. 1325-1333, Jun. 1996. [8] F. Argenti and E. Del Re, “Design of IIR Eigenfilters in the frequency domain,” IEEE Trans. Signal Processing, vol. 46, no. 6, pp. 1694-1698, Jun. 1998. [9] S. Sunder and V. Ramachandran, “Design of recursive differentiators with constant group-delay characteristics,” Signal Processing, vol. 39, pp. 79-88, 1994. [10] A. T. Chottera and G. A. Jullien, “A linear programming approach to recursive digital filter design with linear phase,” IEEE Trans. Circuits & Syst., vol. CAS-29, pp. 139-149, Mar. 1982. [11] W. S. Lu, S. C. Pei, and C. C. Tseng, “A weighted least-squares method for the design of stable 1-D and 2-D IIR digital filters,” Trans. Signal Processing, vol. 46, no. 1, pp. 1-10, Jan. 1998. [12] Tian-Hu Yu, S. K. Mitra, and H. Babic, “Design of linear phase FIR notch filters,” Sadhana, vol. 15, lss.3, pp. 133-155, Nov. 1990, India. [13] A. Nehorai, “A minimal parameter adaptive notch filter with constrained poles and zeros,” IEEE Trans. Acoust. Speech, Signal Processing, vol. ASSP-33, pp. 983-966, Aug. 1985. [14] T. S. Ng, “Some aspects of an adaptive digital notch filter with constrained poles and zeros,” IEEE Trans. Acoust. Speech, Signal Processing, vol. ASSP-35, pp. 158-161, Feb. 1987. [15] J. K. Liang, R. J. Pefigueriredo and F. C. Lu, “Design of optimal Nyquist, partial response, Nth band and nonuniform tap spacing FIR digital filters using linear programming techniques,” IEEE Trans. Circuits Syst., vol. 32, pp. 386-392, Apr. 1985. [16] X. Zhang and H. Iwakura, “Design of FIR Nyquist filters using Remez exchange algorithm,” IEICE Trans., vol. J79-A, no. 8, pp. 1378-1384, Aug. 1996. [17] K. Nakayama and T. Mizukami, “A new IIR Nyquist filter with zero intersymbol interference and its frequency response approximation,” IEEE Trans. Circuits Syst., vol. CAS-29, no. 1, pp. 23-34, Jan. 1982. [18] S. J. Maeng and B. G. Lee, “A design of linear-phased IIR Nyquist filters,” IEEE Trans. on Selected Areas in Comm., vol. 13, no. 1, pp. 167-175, Jan 1995. [19] E. R. Kretzmer, “Generalization of a technique for binary data communication,” IEEE Trans. Comm. Tech., pp. 1966-1969, Feb. 1966. [20] R. W. Lucky, J. Salz and E. J. Jr. Weldon, “Principles of data communication,” New York: McGraw-Hill, 1968. [21] T. Chen and P. P. Vaidyanathan, “Design of IFIR eigenfilters,” Proc. IEEE Int. Symp. Circuits & Syst., Singapore, pp. 264-267, Jun. 1991. [22] T. Chen, “Unified eigenfilter approach: With applications to spectral/spatial filtering,” IEEE Int. Symp. Circuits & Syst., Chicago, IL, pp. 331-334, May 1993. [23] S. C. Pei, C. C. Tseng, and W. S. Yang, “FIR filter designs with linear constraints using the eigenfilter approach,” IEEE Trans. Circuits & Syst. II, vol. 45, no. 2, pp. 232-237, Feb. 1998. [24] Y. C. Lim, J. H. Lee, C. K. Chen, and R. H. Yang, “A weighted least squares algorithm for quasi-equiripple FIR and IIR digital filter design,” IEEE Trans. Signal Processing, vol. 40, pp. 551-558, Mar. 1992. [25] T. Q. Nguyen, “The eigenfilter for the design of linear-phase filters with arbitrary magnitude response,” IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 1981-1984, May 1991. [26] W. K. Pratt, Digital Image Processing, New York: Wiley, 1978, Chapter2. [27] B. Yegnanarayana, “Design of ARMA digital filters by pole-zero decomposition,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-29, pp. 433-439, Jun. 1981. [28] C. E. Schmid, “Design of IIR/FIR filters using a frequency domain bootstrapping technique and LPC method,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-31, pp. 999-1006, Aug. 1983. [29] T. Kobayashi and S. Imai, “Design of IIR digital filters with arbitrary log magnitude function by WLS technique,” IEEE Trans. Acoust., Speech, Signal Processing, Sig. Proc., vol. 38, pp. 247-252, Feb. 1990. [30] T. Kobayashi, K. Fukushi, K. Tokuda, and S. Imai, “Design of stable two-dimensional IIR digital filters with arbitrary magnitude function,” IEEE Conf. Acoust., Speech, and Signal Processing, ICASSP-92., vol. 5, pp. 93-96, 1992. [31] S. C. Pei and J. J. Shyu, “Design of arbitrary FIR log eigenfilters,” IEEE Trans. Circuits & Syst.-II: Analog and Digital Signal Processing, vol. 41, no. 5, pp. 361-364, May 1994. [32] L. R. Raginer and B. Gold, Theory and Application of Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1989. [33] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1989. [34] T. W. Parks and J. H. McClellan, “Chebyshev approximation for nonrecursive digital filters with linear phase,” IEEE Trans. Circuit Theory, vol. CT-19, pp.189-194, 1972. [35] V. R. Algazi and M. Suk, “On the frequency weighted least squares design of finite duration filters,” IEEE Trans. Circuits & Syst., vol. CAS-34, pp. 80-95, 1987. [36] M. Okuda, M. Ikehara, and S. Takahashi, “Fast and stable least squares approacj for the design of linear phase FIR filters,” IEEE Trans. Signal Processing, vol. 46, no. 6, Jun. 1998. [37] G. A. Merchant and T. W. Parks, “Efficient solution of a Toeplitz-plus-Hankel coefficient matrix system of equations,” IEEE Trans Acoust., Speech, Signal Processing, vol. ASSP-30, pp. 40-44, 1982. [38] T. Saramaki, “Design of FIR filters as a tapped cascaded interconnection of identical subfilters,” IEEE Trans. Circuits & Syst., vol. CAS-34, no. 9, pp. 1011-1029, Sep. 1987. [39] A. Y. Kwentus, Z. Jiang, A. N. Willson Jr., “Application of filter sharpening to cascaded integrator-comb decimation filters,” IEEE Trans. Signal Processing, vol. 45, no. 2, pp. 457-467, Feb. 1997. [40] M. Renfors and T. Saramaki, “Recursive Nth-band digital filters- Part I: design and properties,” IEEE Trans. Circuits & Syst., vol. CAS-34, no. 1, pp. 24-39, Jan. 1987. [41] M. Renfors and T. Saramaki, “Recursive Nth-band digital filters- Part II: design of multistage decimators and interpolators,” IEEE Trans. Circuits & Syst., vol. CAS-34, no. 1, pp. 40-51, Jan. 1987. [42] J. J. Din, “Derivation and properties of orthogonal transform,” the dissertation for the degree of master at National Taiwan University, Taipei, Taiwan, R.O.C, Jul. 1997.
|