跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 10:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昱瑋
研究生(外文):Yu-Wei, Chen
論文名稱:醫用超音波儀系統參數對影像紋理的影響與消除
論文名稱(外文):Reduction of System Parameter Effects on Texture of Medical Ultrasound Image
指導教授:曹建和
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:76
中文關鍵詞:超音波肝臟系統參數互相關矩陣
外文關鍵詞:ultrasoundliversystem parameterco-occurrence
相關次數:
  • 被引用被引用:1
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
醫學用超音波儀器,在對不同疾病、不同患者進行診斷,甚至因醫師的使用習慣,會調整成為不同的設定狀態。但是在進行某些研究分析時,影像不能受到儀器設定的影響。本研究首先分析儀器在不同設定狀態時對影像紋路的影響,並利用speckle的機率密度函特性,提出一種計算增益及動態範圍影響的方法。在論文中,我們利用仿體及臨床影像,來檢驗三台醫用超音波儀對該演算法的表現,並得到良好的結果。
Medical ultrasound imaging system can be regulated in different setting dependents on doctors'' habit or patients'' need. During some experimental analysis, some finds that the image texture cannot be affected by the regulation of ultrasound imaging system. This research tries to analyze how effective the ultrasound imaging system is to the image texture while having different settings. We use a distinguishing feature from a probability density function of speckle to bring up a method to calculate Gain and Dynamic range. We also gather some phantom and clinical imaging to examine three medical used machines of ultrasound imaging system. We did, in fact, get a good result from it.
第一章 簡介
1-1 超音波簡介
1-2 研究動機
1-3 論文架構
第二章 超音波成像系統及互相關矩陣
2-1 醫用超音波成像系統
2-2 互相關矩陣
2-3互相關矩陣係數
第三章 影像取樣距離對紋路分析的影響
3-1 超音波影像與互相關矩陣d參數之關係
3-2 超音波影像的解析度
3-3 消除解析度影響
第四章 動態範圍與增益對影像的影響與消除
4-1 動態範圍與影像
4-2 改變動態範圍與增益以互相關矩陣來評估
4-3 尋找對應動態範圍斜率及消除其影響的方法
4-4 消除動態範圍與增益影響的實驗
4-4-1 背景影像的實驗
4-4-2 包含物體影像的實驗
第五章 臨床超音波影像之處理實驗
5-1 實驗設備及流程
5-2 實驗數據與結果
第六章 結論與未來展望
6-1 結論
6-2 未來展望
參考資料
[1] R. M. Haralick, K. Shanmugam, and I. Dinstein, "Textural features for image classification." IEEE Trans. Systems, Manufact. Cybernet., Vol. SMC-3, No.6, pp.610-621, 1973.
[2] D. Terzopoulos, "Co-Occurrence Analysis of Speech Waveforms," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-33, pp.5-30, Feb 1985.
[3] P. G.. Hoel, Introduction to Mathematical Statistics, 4th ed. New York: Wiley, 1971, p235
[4] D. C. Crawford, "Compensation for the Signal Processing Characteristics of ultrasound B-mode Scanners in Adaptive Speckle Reduction", Ultrasound in Med. & Biol. Vol. 19, pp469-485, 1993
[5] R. F. Wagner, "Statistics of Speckle in Ultrasound B-Scans", IEEE Trans. Sonics and Ultrason, Vol.30, No.3, pp.156-163, May 1983
[6] E. Kyriacou, "Computer assisted characterization of liver tissue using image texture analysis techniques on b-scan images", IEEE/EMBS Oct.30-Nov.2, pp.806, 1997 Chicago, IL. USA
[7] Ahmed M. Badawi, "Ultrasonographic tissue signature for shistosomal liver and other related liver pathologies", IEEE Ultrasonics symposium, pp.1193, 1995,
[8] Conners, R.W. and Harlow, C.A., "A theoretical comparison of texture algorithms", IEEE trans. Patt. Anal. And Machine Intell., Vol. PAMI 2, 1980
[9] Fox, M.D., "Analysis of medical images with microcomputers", American Journal of Physiologic Imaging 2, pp.77-87, 1987
[10] Chung-Ming Wu, Yung-Chang Chen, "Texture features for classification of ultrasonic liver images" IEEE trans. Medical Imaging, Vol. 11, No.2, pp.141, Jun 1992
[11] J.S. Weszka, C.R. Dryer, and A. Rosenfeld, "A comparative study of texture measures for terrain classification", IEEE Trans. Syst., Man, Cybern., Vol. SMC-6, pp.269-285, 1976
[12] Elfadel, I. M. and Rosalind W. Picard, "Gibbs random fields, Co-occurrences, and texture modeling", IEEE Trans. On Pattern Analysis and Machine Intelligence, Vol. 16, No. 1, pp.24-37, Jan 1994
[13] S. Pavlopoulos, G. Konnis, "Evaluation of texture analysis techniques for quantitative characterization ultrasonic liver images", IEEE engineering in medicine and biology society, Amsterdam pp.1151, 1996,
[14] A.P. Berkhoff, J.M. Thijssen, "Correction of concentrated and distributed aberrations in medical ultrasound imaging", IEEE Ultrasonics Symposium, pp.1405, 1996
[15] J. Meunier, "Echographic image mean gray level changes with tissue dynamics: a system-based model study", IEEE Trans. Biomedical Engineering, Vol. 42, No. 4, pp. 403, April 1995
[16] Yung-Nien Sun, "Assessing liver tissue fiberosis with an automatic computer morphometry system", IEEE Engineering in Medicine and Biology, pp.66, May 1997
[17] George R. Cross, "Markov random field texture models", IEEE Trans. Pattern analysis and Machine Intelligence, Vol. PAMI-5, No.1, pp.25 Jan 1983
[18] Yasser M. Kadah, "Classification algorithms for quantitative tissue characterization of diffuse liver disease from ultrasound images", IEEE Trans. Medical Imaging, Vol. 15, No. 4, pp.466, Aug 1996
[19] Henkjan J. Huisman, "An in vivo ultrasonic model of liver parenchyma", IEEE Trans. U.F.F.C., Vol. 45, No. 3, pp.739 May 1998
[20] Jason J. Rownd, "Phantoms and automated system for testing the resolution of ultrasound scanners", Ultrasound in Med. & Biol., Vol. 23, No.2, pp.245-260, 1997
[21] Ernest L. Madsen, "Performance testing of transrectal US scanners", Medical Physics, pp.77, 1994
[22] J.S. Bleck, "Random field models in the texturalanalysis of ultrasonic images of the liver", IEEE Trans. Medical Imaging, Vol. 15, No. 6, pp.796, Dec 1996
[23] Esko Alasaarela, "Evaluation of image quality of ultrasound scanners in medical diagnostics", J. Ultrasound Med 9, pp.23-34, 1990
[24] Olivier D. Faugeras, "Decorrelation methods of texture feature extraction", IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 4, pp.323, JUL 1980
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top