跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 23:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳忠偉
論文名稱:應用於晶片介面信號之追蹤式資料回復系統
論文名稱(外文):A Tracking Data Recovery System for Inter-Chip Signaling
指導教授:劉深淵
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:91
中文關鍵詞:資料回復系統介面電路IEEE-1394延遲鎖定迴路
外文關鍵詞:Data Recovery SystemInterface CircuitIEEE-1394Delay-Locked Loop
相關次數:
  • 被引用被引用:0
  • 點閱點閱:308
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:1
隨著CMOS製程技術的發展,以及處理器運算能力的快速提升,使得許多寬頻的資料連結與傳輸技術愈來愈顯得需要。在許多的應用中,比如說多工處理器之間的連結、處理器與記憶體之間的介面、甚至於電腦與電腦之間和電腦與週邊產品的溝通,這樣子的高速介面常常扮演了非常重要的角色。也因此,有關傳輸端與接收端電路設計的一些研究目標,也從目前商品所需的數百Mb/s,延伸到下一代資料連結規格中所訂定的Gb/s的等級。這本論文的研究目的就是在設計一個可靠的介面電路,可工作在Gb/s的速度,並且試著在接收端利用一個追蹤式資料回復系統去回復所接收到的傳輸資料。
為了高速傳輸所需,設計介面電路時常常需要考慮許多取捨。同時,利用0.25-μm的製程,在2.5-V的電源電壓下,我們設計並實現了一個本研究所需的可工作在1-Gb/s的介面電路。經由Std. IEEE-1394中所訂定的4.5公尺遮蔽式雙絞線傳輸通道,這個介面電路在傳輸1.4-Gb/s的NRZ信號時,其誤碼率可以低於10-10以下。
為了把接收到的信號正確地回復成數位的資料,我們提出了一個利用數位方式回授的系統結構。利用三倍過取樣的技巧,這個追蹤式的資料回復系統可以正確地回復1-Gb/s的傳輸資料。這個系統避免了在兩倍取樣的系統中會遭遇到的亞穩態問題,並保持了閉迴路的校正特性。當取樣時脈被移至一個位元區間內時,我們把每一組的中間信號資訊直接選出來成為回復後的資料,這樣子可以減少資料選取邏輯電路的複雜度。最後,所得到的資料經過同步,則變成四組平行的輸出資料串,且速率為250-Mb/s。
The continuing scaling of CMOS process technologies, combining with the increasing computational capability of processor, indicates that high bandwidth links to communicate the information that is processed is needed. Such high-speed links are often an important part of multi-processor interconnection, processor-to-memory interfaces, and computer-to-computer or computer-to-peripheral interfaces. The research and design of transmit and receive circuits for these links target increasing link speeds from hundreds of Mb/s in current commodity link to Gb/s in the specifications for the next generation links. The goals of this research is to design a robust interface circuit with the data rate at Gb/s and try to recover the transmitted data by a tracking data recovery system at the receiving end.
For high-speed data transmission, trade—offs involved in the design of the interface should be considered. Meanwhile, the interface circuits for 1-Gb/s data rate adopted in this work have been designed and implemented with a 0.25-μm CMOS technology with a 2.5-V supply power. With a 4.5-m Shielded-Twisted-Pair cable defined in Std. IEEE-1394, the interface circuits could transmit 1.4-Gb/s NRZ signals with Bit-Error-Rate less than 10-10.
To recover the received signal to digital binary data correctly, a system architecture with a digital feedback control loop is proposed. With 3X-oversampling technique, the signal transmitted in a mesochronous system could be recovered correctly by the tracking data recovery system with the data rate at 1-Gb/s. The system prevents the metastability problem in 2X-sampling tracking systems, keeping the closed-loop phase calibration mechanism. When the sampling clock phases are moved into a bit duration, the data information sampled by the middle clock phase is picked up to be the recovered data signal, reducing the complexity of data selection logic. The recovered data would be synchronized to four channels. Using Delay-Locked Loop’s, instead of Phase-Locked Loop’s, could reduce the response time when a clock phase step is induced, and get phase-tracking rate at 1/8 of reference clock. Therefore, the input data stream at 1-Gb/s could be recovered by this system to be four parallel data at 250-Mb/s.
Acknowledgments i
Abstracts iii
Table of Contents vii
List of Tables xi
Table of Contents xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 CMOS Links 1
1.3 Thesis Organization 3
Chapter 2 Interface Circuits 5
2.1 Noise Considerations 5
2.1.1 Independent noise 5
2.1.2 Proportional Noise 6
2.2 Package and Channel 8
2.2.1 Basic Package Model 8
2.2.2 Channel Characteristics 9
2.3 Basic Signaling Methods 10
2.3.1 Low Impedance Signaling 11
2.3.2 High Impedance Signaling 14
2.4 Interface Circuit Design 17
2.4.1 Transmitter 17
2.4.2 Termination Method 17
2.4.3 Receiver 18
2.4.4 Simulation Results 21
Chapter 3 Background of Data Recovery System 23
3.1 Timing Margin 23
3.2 Conventional Bus Links 25
3.3 Source Synchronous Interfaces 27
3.3.1 High-Speed Buses 27
3.3.2 Point-to-Point Links 28
3.4 Serial Links 30
3.5 Timing Recovery Architectures 32
3.5.1 PLL-based timing recovery 32
3.5.2 Phase-picking-based timing recovery 37
Chapter 4 A Proposed Data Recovery System 41
4.1 Mesochronous Interconnection 41
4.2 System Architecture 42
4.3 Phase-Locked Loop and Delay-Locked Loop 45
4.4 Circuits Design 48
4.4.1 Delay-Locked Loops 48
4.4.2 Phase Selector 58
4.4.3 Phase Shifter 58
4.4.4 Control Logic 60
4.4.5 Synchronizer 61
4.4.6 System Simulation Results 62
Chapter 5 Measurement Results 67
5.1 Interface Circuit 67
5.1.1 Measurement Environment Setup 67
5.1.2 Measurement Results 68
5.1.3 Summary 69
5.2 Delay-Locked Loop’s 71
5.2.1 Measurement Environment Setup 71
5.2.2 Measurement Results 72
5.2.3 Summary 75
5.3 The Tracking Data Recovery System 76
5.3.1 Measurement Environment Setup 77
5.3.2 Measurement Results 77
5.3.3 Summary 81
Chapter 6 Conclusions and Future Works 83
6.1 Conclusions 83
6.2 Recommendations for Future Works 84
References 85
[1] R. Mooney, et al., “A 900Mb/s bidirectional signaling scheme,” IEEE Journal of Solid-State Circuits, vol.30, no.12, pp.1538-1543, Dec. 1995.
[2] M. Galles, et al., “Spider: a high-speed network interconnect, IEEE Micro, vol.17, no.1, pp. 34-39, Jan.-Feb. 1997.
[3] R.C. Foss, et al., “Memory-fast interfaced for DRAMs,” IEEE Spectrum, vol.29, no.10, pp.54-57, Oct. 1992.
[4] N. Kushiyama, et al., “A 500-megabyte/s data-rate 4.5M DRAM,” IEEE Journal of Solid-State Circuits, vol.28, no.4, pp. 490-498, Apr. 1993.
[5] I.J. Wickelgren, “The facts about Fire Wire [serial communication bus],” IEEE Spectrum, vol.34, no.4, pp.19-25, Apr. 1997.
[6] G.O. Thompson, “Work progresses on gigabit Ethernet,” Computer IEEE Comput. Soc., vol.30, no.5, pp.95-96, May 1997.
[7] P. Gray, “Presentation, Short Course,” 1997 International Solid-State Circuits Conference Short Course, Feb. 1997.
[8] J. Poulton, W.J. Dally, and Steve Tell, “A Tracking Clock Recovery Receiver for 4-Gbps signaling” IEEE Micro, vol.18, no.1, pp.25-27, Jan.-Feb. 1998.
[9] P. Gray and R. Meyer, “Analysis and Design of Analog Integrated Circuits,” 3rd ed., John Wiley & Sons Inc., 1993.
[10] H.B. Bakoglu, “Circuits, Interconnections, and Packaging for VLSI,“ Addison- Wesley Publication Company, 1990.
[11] T. Gabara, “Digital transistor sizing techniques applied to 100K ECL CMOS output buffers,” Proceeding of the Sixth Annual IEE International ASIC Conference, pp.456-459, Oct. 1993.
[12] A. DeHon, T.simon and T. Knight, “Automatic impedance control,” 1993 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, pp. 164-165, Feb. 1993.
[13] David A. Johns and Daniel Essig, “Integrated Circuits for Data Transmission Over Twisted-Pair Channels,” IEEE Journal of Solid-State Circuits, vol.32, no.3, pp. 398-406, Mar. 1997.
[14] Stefanos Sidiropoulos, “High-Performance Inter-Chip Signalling,” Ph.D. Dissertation, Stanford University, 1998.
[15] T. Aytur, et al., “The Design of a High Speed Serial Link for IRAM,” CS254 Project Report, University of California at Berkeley, 1997.
[16] J. Poulton, “Signaling in High-Performance Memory Systems,” 1999 Inter-national Solid-State Circuits Conference Tutorials, Feb. 1999.
[17] IEEE Standard for a High Performance Serial Bus, IEEE Std. 1394-1995.
[18] S. Sidiropoulos, et al., “A CMOS 500 Mbps/pin synchronous point to point link interface,” Proceeding of the 1994 IEEE Symposium on VLSI Circuits, pp.43-44, Jun. 1994.
[19] T. Takahashi, et al., “A CMOS Gate Array with 600Mb/s Simutaneous Bidirectional I/O Circuits,” IEEE Journal of Solid-State Circuits, vol.30, no.12, pp.1544-1546, Dec 1995.
[20] T. Knight and A. Krymm, “A self-terminating low-voltage swing CMOS output driver,” IEEE Journal of Solid-State Circuits, vol.23, no.2, pp.457-464, Apr. 1988.
[21] E. Reese, et al., “A Phase-tolerant 3.8GB/s data-communication router for a multi-processor supercomputer backplane,” 1994 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, pp.296-297, Feb. 1994.
[22] B. Gunning, L. Yuan, T. Nguyen, and T. Wong, “A CMOS low-voltage-swing transmission-line transceiver,” 1992 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, pp.58-59, Feb. 1992.
[23] S. Kim, K. Lee, and D.K. Jeong, “A pseudo-synchronous skew-insensitive I/O scheme for high bandwidth memories,” Proceedings of 1994 IEEE Symposium on VLSI Circuits, pp.41-42, Jun. 1994.
[24] K. Lee, S. Kim, G. Ahn, and D.K. Jeong, “A CMOS Serial link for fully duplexed data communication,” IEEE Journal of Solid-State Circuits, vol.30, no.4, pp.353-364, Apr. 1995.
[25] W.J. Dally and J. Poulton, “Transmitter Equalization for 4-Gbps signaling” IEEE Micro, vol.17, no.1, pp.48-56, Jan.-Feb. 1997.
[26] K. Donnelly, “A 660 MB/s interface megacell portable circuit in 0.3μm-0.7μm CMOS ASIC,” 1996 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, pp.290-291, Feb. 1996.
[27] Barbara A. Chappell, et al., “Fast CMOS ECL Receivers with 100-mV Worst-Case Sensitivity,” IEEE Journal of Solid-State Circuits, vol.23, no.1, pp.59-67, Feb. 1988.
[28] M. Bazes, “Two Novel Fully Complementary Self-Biased CMOS Differential Amplifiers” IEEE Journal of Solid-State Circuits, vol.26, no.2, pp.165-168, Feb. 1991.
[29] M. Bazes, “Self-Biased, High-Gain Differential Amplifier with Feedback,” U.S. Patent 4 937 476, Jun. 1990.
[30] R. Jacob Baker, “Fully Differential Amplifier,” U.S. Patent 5 953 276, Sep. 1999.
[31] R. Jacob Baker, “High-speed (>500 Mbits/s), low-skew fully-differential digital receiver/transmitter design,” Micron, 1998. (http://cmosedu.com/jbaker/projects/sbfd.htm)
[32] John G. Maneatis, “Low-Jitter Process-Independent DLL and PLL Based on Self-Biased Techniques,” IEEE Journal of Solid-State Circuits, vol.31, no.11, pp.1723-1732, Nov. 1996.
[33] Dan H. Wolaver, “Phase-Locked Loop Circuit Design,” Prentice Hall, 1991.
[34] A. Mu, et al., “A 285 MHz 6-port Plesiochronous Router Chip with Non-Blocking Cross-Bar Switch” Proceedings of 1996 IEEE Symposium on VLSI Circuits, pp.136-137, Jun. 1996.
[35] J. Kusin, et al., “The Stanford FLASH Multiprocessor,” Proceedings of the 21st International Symposium on Computer Architecture, ISCA-94, pp. 274-284.
[36] N. McKeown, “Tina Tera: A Packer Switch Core,” IEEE Micro, vol.17, no.1, pp.26-33, Jan.-Feb. 1997.
[37] F. Tobagi, “Fast Packet Switch Architectures for Broad” Proceedings of the IEEE, vol.78, no.1, pp.133-167, Jan. 1990.
[38] M.A. Horowitz, et al., “PLL Design for a 500MB/s Interface,” 1993 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, pp.160-161, Feb. 1993.
[39] T.H. Lee, et al., “A 2.5V CMOS Delay-Locked Loop for an 18 Mbit, 500 Megabyte/s DRAM,” IEEE Journal of Solid-State Circuits, vol.29, no.12, pp.1491-1496, Dec. 1994.
[40] S. Sidiropoulos and M.A. Horowitz, “A Semidigital Dual Delay-Locked Loop,” IEEE Journal of Solid-State Circuits, vol.32, no.11, pp.1683-1692, Nov. 1997.
[41] Ramin Farjad-Rad, et al., “A 0.3-μm CMOS 8-Gb/s 4-PAM Serial Link Tranceiver,” Proceedings of 1999 IEEE Symposium on VLSI Circuits, pp.41-44, Jun. 1999.
[42] A. Fiedler, et al., “A 1.0625Gbps Transceiver with 2x-Oversampling and Transmit Signal Pre-Emphasis,” 1997 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, pp.238-239, Feb. 1997.
[43] R. Gu, et al., “A 0.5-3.5Gb/s Low-Power Low-Jitter Serial Data CMOS Transceiver,” 1999 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, pp.352-353, Feb. 1999.
[44] B. Kim, et al., “A 30-MHz Hybrid Analog/Digital Clock Recovery Circuit in 2-μm CMOS,” IEEE Journal of Solid-State Circuits, vol.25, no.6, pp.1385-1394, Dec. 1990.
[45] T. Hu and P. Gray, “A Monolithic 480 Mb/s Parallel AGC/Decision/Clock-Recovery Circuit in 1.2-μm CMOS,” IEEE Journal of Solid-State Circuits, vol.28, no.12, pp.1314-1320, Dec. 1998.
[46] M. Banu and A. Dunlop, “A 660Mb/s Clock Recovery Circuit with Instantaneous Locking for NRZ Data and Burst-Mode Transmission” 1993 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, pp.102-103, Feb. 1993.
[47] M. Soyuer and H. Ainspan, “A Monolithic 2.3Gb/s 100mW Clock and Data Recovery Circuit,” 1993 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, pp.158-159, Feb. 1993.
[48] A. Pottbacker and U. Langmann, “An 8-GHz Silicon Bipolar Clock-Recovery and Data-Regenerator IC,” 1994 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, pp.116-117, Feb. 1994.
[49] C.K. Yang, et al., “A 0.8-μm CMOS 2.5 Gb/s Oversampling Receiver and Transmitter for Serial Links,” IEEE Journal of Solid-State Circuits, vol.31, no.12, pp.2015-2023, Dec. 1996.
[50] C.K. Yang, et al., “A 0.5-μm CMOS 4.0-Gbit/s Serial Link Transceiver with Data Recovery Using Oversampling,” IEEE Journal of Solid-State Circuits, vol.33, no.5, pp.713-721, May. 1998.
[51] T.H. Lee, et al., “A 155MHz Clock Recovery Delay- and Phase-Locked Loop,” IEEE Journal of Solid-State Circuits, vol.27, no.12, pp.1736-1746, Dec. 1992.
[52] K. Nakamura, et al., “A 6 Gbps CMOS Phase Detecting DEMUX Module Using Half-Frequency Clock,” Proceedings of 1998 IEEE Symposium on VLSI Circuits, pp.196-197, Jun. 1998.
[53] K.Y. Chang, et al., “A 2Gb/s/pin CMOS Asymmetric Serial Link,” Proceedings of 1998 IEEE Symposium on VLSI Circuits, pp.216-217, Jun. 1998.
[54] D.L Chen and M.O. Baker, “A 1.25Gb/s, 460mW CMOS Tranceiver for Serial Data Communication,” 1997 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, pp.242-243, Feb. 1997.
[55] C.L. Portmann, et al., “Metastability in CMOS Library Elements in Reduced Supply and Technology Scaled Applications,” IEEE Journal of Solid-State Circuits, vol.30, no.1, pp.39-46, Jan. 1995.
[56] Harry J.M. Veendrick, “The Behavior of Flip-Flops Used as Synchronizers and Prediction of Their Failure Rate,” IEEE Journal of Solid-State Circuits, vol.15, no.2, pp.169-176, Apr. 1980.
[57] John E. McNamara, “Technical Aspects of Data Communication,” 2nd ed., Digital Press, Bedford, MA, 1982.
[58] S. Kim, et al., “An 800 Mbps Multi-Channel CMOS Serial Link with 3x Oversampling” Proceedings of the IEEE 1995 Custom Integrated Circuits Conference, pp.451-454, Feb. 1995.
[59] Kyeongho Lee, et al., “1.04 GBd Low EMI Digital Video Interface System Using Small Swing Serial link Technique” IEEE Journal of Solid-State Circuits, vol.33, no.5, pp.816-823, May. 1998.
[60] D.G. Messerschmitt, “Synchronization in Digital System Design,” IEEE Journal on Selected Areas in Communications, vol.8, no.8, pp.1404-1419, Oct. 1990.
[61] Chin-Kong Ken Yang, “Design of High-Speed Serial Links in CMOS,” Ph.D. Dissertation, Stanford University, 1998.
[62] F. Gardner, “Phaselock Techniques,” 2nd ed., John Wiley & Sons Inc., 1979.
[63] F. Gardner, “Charge-Pump Phase-Locked Loops,” IEEE Transactions on Communications, vol.COM-28, no.11, pp.1849-1858, Nov. 1980.
[64] Roland E. Best, “Phase-Locked Loops,” 3rd ed., McGraw-Hill, 1998.
[65] Behzad Razavi, Editor, “Monolithic Phase-Locked Loops and Clock Recovery Circuits,” IEEE Press, 1996.
[66] M.G. Johnson and E.L. Hudson, “A variable Delay Line PLL for CPU-Coprocessor Synchronization,” IEEE Journal of Solid-State Circuits, vol.23, no.5, pp.1218-1223, May. 1988.
[67] S.J. Lee, B. Kim, and K. Lee, “A Fully Integrated Low-Noise 1-GHz Frequency Synthesizer Design for Mobile Communication Application”, IEEE Journal of Solid-State Circuits, vol.32, no.5, pp.760-765, May. 1997.
[68] I.A. Young, et al., “A PLL Clock Generator with 5 to 110 MHz of Lock Range for Microprocessors,” IEEE Journal of Solid-State Circuits, vol.27, no.11, pp.1599-1607, Nov. 1992.
[69] S. Kim, et al., “A 960-Mb/s/pin Interface for Skew-Tolerant Bus Using Low Jitter PLL,” IEEE Journal of Solid-State Circuits, vol.32, no.5, pp.691-700, May. 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top