跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 07:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳紀光
研究生(外文):Chi-Kuang Chen
論文名稱:適用於第三代無線通訊系統之數位訊號處理器及可程式化關聯器陣列架構
論文名稱(外文):A Digital Signal Processor With Programmable Correlator Array Architecture For 3rd Generation Wireless Communication System
指導教授:陳良基陳良基引用關係
指導教授(外文):Liang-Gee Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:76
中文關鍵詞:數位訊號處理器關聯器第三代無線通訊
外文關鍵詞:Digital Signal ProcessorDSP3rd generation wireless communicationcorrelator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:2
在本篇論文中,提出了一個包含可程式化關聯器陣列架構之適用於無線通訊的數位訊號處理器。可程式化的關聯器陣列可以輕易的被設定成為slot同步器、碼群組偵測器、scrambling碼偵測器,以及RAKE接收器。此外,此關聯器也有低功率之設計。
此外,所提出的數位訊號處理器,由於其特殊之架構與指令集,在一些無線通訊標準像是GSM以及IS-95中所需之運算如Viterbi演算法以及複數運算,皆有傑出之表現。藉由和一些在無線通訊系統常用之數位訊號處理器的比較結果,可得知所提出之數位訊號處理器確實在無線通訊的演算法方面較其他數位訊號處理器來的有效率。此數位訊號處理器晶片是同時採用full-custom及cell-based的設計-在critical路徑採用full-custom,其他部份則採用0.35\mu{m}、1P4M的標準元件庫來合成。
我們相信,所提出的關聯器陣列架構以及適用於無線通訊之數位訊號處理器,在未來的第三代無線通訊行動系統設計中是非常有用的。
In this thesis, a digital signal processor that is designed for communication appli-cations
with a programmable correlator array architecture is introduced. The pro-grammable
correlator can be easily configured as a chip match filter, code group
detector, scrambling code detector, and RAKE receiver. It also has low power
consideration.
The architecture and instruction set of the proposed DSP (CDSP) makes it
has good performance at Viterbi algorithm and complex arithmetic operations for
some wireless communication standards such as GSM and IS-95. According to
the performance evaulation results, the suggested DSP core outperforms other
DSPs in terms of several operations normally used in wireless communication.
The chip was implemented in a hybrid design method where the critical path was
full-custom designed and the other parts are cell-based using a 0.35um 1P4M
cell-library.
We believe that the suggested correlator array architecture and digital signal
processor are useful for future 3G mobile terminal design.
1 Introduction 1
1.1 CDMA concepts . . ........................ 2
1.2 IMT-2000/UMTS and 3GPP .................... 2
1.2.1 3GPP . . . . ........................ 4
1.3 DSP for wireless communication system . ............. 7
1.3.1 Evolution of DSP . . .................... 7
1.3.2 Wireless communication DSPs . . ............. 10
2 3G System Architecture 17
2.1 Tri-Code Correlator . ........................ 18
2.2 Programmable Correlator Array . . . . . ............. 18
2.3 Digital signal processor . . . .................... 21
2.4 System architecture and simulation . . . . ............. 22
3 Design of communication DSP (CDSP) 25
3.1 Design Issues . . . . ........................ 25
3.1.1 Sub-Word Parallel (SWP) . . . . ............. 25
3.1.2 Channel Estimation for RAKE combining . . . ...... 26
3.1.3 Viterbi Algorithm . . .................... 26
3.1.4 FIR . . . . . ........................ 32
3.1.5 Other features ........................ 35
3.2 Instruction Set . . . . ........................ 35
3.2.1 Computational instructions . . . . ............. 36
3.2.2 Data Movement Instructions . . . ............. 36
3.2.3 Program Flow instructions . . . . ............. 36
3.2.4 Special instructions . .................... 41
3.3 Comparison . . . . . ........................ 41
3.4 Architecture Design . ........................ 41
3.4.1 ALU . . . . ........................ 44
3.4.2 CMP . . . . ........................ 44
3.4.3 MAC . . . . ........................ 47
3.4.4 SFT . . . . . ........................ 48
3.4.5 Data Memory Address Generator ............. 48
3.4.6 Program Sequencer . .................... 50
3.4.7 Interrupt and Parallel I/O port . . ............. 50
3.4.8 Booting/Testing Mode . . . . . . ............. 51
4 Design Flow and DSP Implementation 53
4.1 Design flow . . . . . ........................ 53
4.2 Hardware-C simulation . . . .................... 53
4.3 Cell-Based Design . ........................ 56
4.4 Full-Custom Design . ........................ 57
4.5 Chip Implementation ........................ 59
5 Conclusion 61
[1] “TS02.60 v5.0.0 - digital cellular telecommunication system (phase 2+),”
general packet radio service (gprs), ETSI, 1997.
[2] R. Prasad, “An overview of CDMA evolution toward wideband CDMA,”
IEEE Communications Surveys, vol. 1, no. 1, pp. 2—29, 1998.
[3] E. Dahlman, P. Beming, J. Knutsson, F. Ovesj‥ o, M. Persson, and C. Roobol,
“WCDMA—the radio interface for future mobile multimedia communica-tions,”
IEEE Transactions on Vehicular Technology, vol. 47, pp. 1105—1118,
Nov. 1998.
[4] S. Sheng and R. rodersen, Low-Power CMOS Wireless Communications - A
Wideband CDMA System Design. Kluwer Academic Publisher, 1998.
[5] W. Namgoong and T. Men, “Power consumption of parallel spread spectrum
correlator architectures,” in Proceeding of IEEE Low Power Electronics and
Design Conference, pp. 133—135, 1998.
[6] D. Garrett and M. Stan, “Power reduction techniques for a spread spectrum
based correlator,” in Proceedings of IEEE Low Power Electronics and De-sign,
pp. 225—230, 1997.
[7] S. H. Ahn, J. T. Kim, and Y. H. Lee, “Efficient implementation of parallel
correlators for code acquisition in DS/CDMA systems,” in Proceedings of
IEEE Symposium on Circuits and Systems, vol. 4, pp. 576—579, 1999.
[8] L. Liu, W. Lin, and C. Wang, “A pipelined digital differential matched fil-ter
FPGA implementation and vlsi design,” in Proceeding of IEEE Custom
Integrated Circuits Conference, pp. 75—78, 1996.
[9] S.-W. Kim and B. Daneshrad, “A 100uw, 20Mcps versatile correlator chip
for third generation WCDMA systems,” in Conference Record of the Thirty-Third
Asilomar Conference on Signals, Systems, and Computers, pp. 130—
134, 1999.
[10] G. Forney, “The Viterbi algorithm,” Proceedings of the IEEE, vol. 61,
pp. 268—278, Mar. 1973.
[11] H. Suzuki, Y.-N. Chang, and K. K. Parhi, “Low-power bit-serial viterbi de-coder
for 3rd generation W-CDMA systems,” in Proceedings of IEEE Cus-tom
Integrated Circuits Conference, pp. 589—592, 1999.
[12] C. ying Tsui, R. S.-K. Cheng, and C. Lin, “Low power ACS unit design for
the Viterbi decoder,” in Proceedings of IEEE Symposium on Circuits and
Systems, vol. 1, pp. 137—140, 1999.
[13] J.-H. Park and Y.-C. Rho, “Performance test of Viterbi decoder for wideband
CDMA system,” in Proceedings of IEEE Asia and South Pacific Design Au-tomation
Conference, pp. 19—23, 1997.
[14] E. H. Dinan and B. Jabbari, “Spreading codes for direct sequence CDMA
and wideband CDMA cellular networks,” IEEE Communications Magazine,
pp. 48—54, Sept. 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊