跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 13:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陸瑞強
研究生(外文):Ruei-Chang Lu
論文名稱:基板稜鏡光波導元件之研製
論文名稱(外文):A Study of Optical Waveguide Device with Substrate-Prisms
指導教授:王維新王維新引用關係
指導教授(外文):Way-Seen Wang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:170
中文關鍵詞:基板稜鏡彎曲波導Y形分岔波導極化分離器反射式彎曲波導
外文關鍵詞:substrate prismwaveguide bendY-branch waveguidepolarization splitterreflecting-type waveguide bend
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  彎曲波導及分岔波導為積體光波導元件中最重要之基本元件,為使光波能朝所欲之方向前進,或達到分光、合光之功能,即需利用到彎曲和分岔兩種波導。然而,因光直線前進之特性,使得光波對彎曲及分岔結構十分敏感,易產生明顯的輻射損耗,降低光之傳輸率。尤其在以鈮酸鋰為基板的積體光學元件中,此現象更是明顯,使得實用之光彎曲波導角度或分岔角度均於2o以內。是故,如何在鈮酸鋰基板上製作出大角度之彎曲波導,實為一重要且基本之問題。在本論文中,筆者提出基板稜鏡式彎曲波導及反射式彎曲波導結構以改良舊有之彎曲波導及分岔波導。利用光束傳播法模擬各種元件之特性及設計製程參數,並成功的在鈮酸鋰基板上製作出彎曲角度達10o之彎曲波導,分岔角度達7o之極化分離器,以及分岔角度達20o之Y形分岔結構。其優點為製作簡單、製程誤差小、光損耗低,頗適合商業上之應用。

封面
目錄
第一章 導論
1-1 積體光學
1-2 積體光學使用之材質
1-3 研究動機
1-4 內容概述
第二章 光束傳播法
2-1 簡介
2-2 波動方程式
2-3 半向量有限差分光束傳播法
2-4 光場特徵模態
2-5 折射率於光傳播方向變動之計算
第三章 光波導製程
3-1 鈮酸鋰光波導製程
3-2 元件製作流程
第四章 基板稜鏡式彎曲波導
4-1 傳統之彎曲波導
4-2 基皮稜鏡式彎曲波導
4-3 設計與數值模擬
4-4 彎曲波導之製作
4-5 量測與討論
第五章 基板稜鏡式極化分離器
5-1 傳統之極化分離器
5-2 基皮稜鏡式極化分離器
5-3 設計與數值模擬
5-4 極化分離器之製作
5-5 量測與討論
第六章 基稜鏡式Y形分岔波導
6-1 傳統之Y形分岔結構
6-2 基板稜鏡式Y形分岔結構
6-3 設計與數值模擬
6-4 製作與量測
6-5 改良式稜鏡式Y形分岔結構
第七章 反射式彎曲波導
7-1 幾何光學之探討
7-2 反射式突變彎曲波導
7-3 數值模擬與討論
第八章 結論與未來研究方向
8-1 結論
8-2 未來研究方向
參考文獻

第 一 章
[1.1] E. Voges and A. Neyer, “Integrated-optic devices on LiNbO3 for optical communication,” J. Lightwave Technol., vol. 5, pp. 1129-1238, 1987.
[1.2] H. F. Taylor, “Guided wave electrooptic devices for logic and computation,” Appl. Opt., vol. 17, pp. 1493-1498, 1978.
[1.3] M. Dagenais, R. F. Leheny, H. Temkin, and P. Bhattacharya, “Applications and challenges of OEIC technology: A report on the 1989 Hilton head workshop” J. Lightwave Technol., vol. 8, pp. 846-862, 1990.
[1.4] T. Suzuki, O. Eknoyan, and H. F. Tayor, “Electrooptic coefficent measurements in LiNbO3 and LiTaO3,” J. Lightwave Technol., vol. 11, pp. 285-289, 1993.
[1.5] Chen S. Tsai, “Guided-wave acoustooptic bragg modulators for wide-band integrated optic communication and signal processing,” IEEE trans. on Circuit and Sys., vol. 26, pp. 1072-1098, 1979.
[1.6] F. J. Leonberger, “High-speed operation of LiNbO3 electro-optic interferometer waveguide modulators,” Optics. Lett., vol. 5, pp. 312-314, 1980.
[1.7] D. W. Dolfi, M. Nazarathy, and R. L. Jungerman, “40 GHz electrooptic modulator with 7.5V drive voltage,” Electron. Lett., vol. 24, pp. 9-14, 1988.
[1.8] K. Noguchi, O. Mitomi, K. Kawano, and M. Yanagibashi, “Highly efficient 40-GHz bandwidth Ti:LiNbO3 optical modulator employing ridge structure,” IEEE Photon. Technol. Lett., vol. 5, pp. 52-55, 1993.
[1.9] M. Hempstead, J. S. Wilkinson and L. Reekie, “Waveguide lasers operating at 1084 nm in neodymium-diffused lithium niobate,” IEEE Photon. Technol. Lett., vol. 4, pp. 852-855, 1992.
[1.10] N. Mackinmon, C. J. Norrie and B. D. Sinclair, “Laser-diode-pumped, electro-optically tunable Nd:MgO:LiNbO3 microchip laser” J. Opt. Soc. Amer. B, vol. 11, pp. 519-522,1994.
[1.11] M. Dinand, and W. Sohler, “Theoretical modeling of optical amplification in Er-doped Ti: LiNbO3 waveguides,” IEEE J. Quantum Electron., vol. 30, pp. 1267-1276, 1994.
[1.12] C. T. Lee and L. G. Sheu, “Analysis of Nd:MgO:Ti:LiNbO3 waveguide lasers with nonuniform concentration distributions,” J. Lightwave Technol., vol. 14, pp. 2268-2267, 1996.
[1.13] D. Zhang, C. Chen, G. Ding, J. Zhang, and Y. Cui, “Dependence of Ti-diffused Er : LiNbO3 laser efficiency on waveguide fabrication parameters and pump wavelength,” IEEE J. Quantum Electron., vol. 33, pp. 1231-1235, 1997.
[1.14] C. T. Lee and L. G. Sheu, “Analysis of end-pumped Nd:Ti:LiNbO3 microchip waveguide Fabry-Perot lasers,” J. Lightwave Technol., vol. 15, pp. 2147-2153, 1997.
[1.15] C. T. Lee and L. G. Sheu, “Analysis of end-pumped and electrooptically tuned Nd:Ti:MgO:LiNbO3 microchip waveguide lasers,” J. Lightwave Technol., vol. 16, pp. 1315-1322, 1998.
[1.16] C. T. Lee, L. G. Sheu and F. T. Hwang, “Analysis and modeling of Nd:Ti:LiNbO3 microchip laser,” J. Appl. Phys., vol. 86, pp.1191-1195, 1999.
[1.17] J. D. Love, “Application of a low-loss criterion to optical waveguides and devices,” IEE Proc., vol. 136, Pt. J, pp. 225-228, 1989.
[1.18] L. Li and J. J. Burke, “Linear propagation characteristics of periodically segmented waveguides,” Opt. Lett., vol. 17, pp. 1195-1197, 1992.
[1.19] K. Thragarajan, C. W. Chien, R. V. Ramaswamy, H. S. Kim, and H. C. Cheng, “Proton-exchanged periodically segmented waveguides in LiNbO3,” Opt. Lett., vol. 19, pp. 880-882, 1994.
[1.20] D. Nir, Z. Weissman, S. Ruschin, and A. Hardly, “Periodically segmented waveguides in Ti:LiNbO3,” Opt. Lett., vol. 19, pp. 1732-1734, 1994.
[1.21] K. Thyagarajan, V. Mahalakshmi, and M. R. Shenoy, “Propagation characteristics of planar segmented waveguides with parabolic index segments,” Opt. Lett., vol. 19, pp. 2113-2115, 1994.
第 二 章
[2.1] M. J. Adams, An introduction to optical waveguided, New York, John Wiley & Sons, 1981.
[2.2] J. Jan ta and J. Ctyroky, “On the accuracy of WKB analysis of TE and TM modes in planar graded-index waveguides,” Opt. Comm., vol. 25, pp.49-52, 1978.
[2.3] E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J., vol. 48, pp. 2071-2103,1969.
[2.4] A. Kumar and E. Khular, “A perturbation analysis for modes in diffused waveguides with Gaussian profile,” Opt. Comm., vol. 27, pp. 349-352, 1978.
[2.5] A. D. Sharma and A. K. Ghatak, “A variation analysis of single mode graded-index fibers,” Opt. Comm., vol. 36, pp. 22-24, 1981.
[2.6] G. B. Hocker and W. K. Burns, “Mode in diffused optical waveguides of arbitrary index profile,” IEEE J. Quantum Electron., vol. 11, pp. 270-276, 1975.
[2.7] J. Buns, “Application of the effective index method to nonplanar structure,” IEEE J. Quantum Electron., vol. 20, pp. 1106-1109, 1984.
[2.8] K. Van De Velde and H. Thienpont, “Extending the effective index method for arbitrary shape inhomogeneous optical waveguides,” J. Lightwave Tech., vol. 6, pp. 1153-1159, 1988.
[2.9] Mabaya, P. E. Lagasse, and P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microwave Theory Tech., vol. 29, pp. 600-605, 1981.
[2.10] Bierwirth, N. Schulz, and F. Arndt, “Finite difference analysis of rectangular dielectric waveguide structrures,” IEEE Trans. Microwave Theory Tech., vol. 34, pp. 1104-1114, 1986.
[2.11] S. Stern, “Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles,” IEE proceeding, vol. 135, pp. 56-63, 1988.
[2.12] M. D. Feit and J. A. Flect, Jr., “Light propagation in graded index optical fibers,” Appl. Opt., vol. 17, pp. 3990-3998, 1978.
[2.13] J. A. Fleck, Jr., J. R. Morris and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys., vol. 10, pp. 2834-2851, 1979.
[2.14] J. Saijonmaa and D. Yavick, “Beam-propagation analysis of loss in bent optical waveguides and fibers,” J. Opt. Soc. Am., vol. 73, pp. 1785-1791, 1983.
[2.15] M. D. Feit and J. A. Fleck, Jr., “Propagating beam theory of optical fiber cross coupling,” J. Opt. Soc. Am., vol. 71, pp. 1361-1372, 1981.
[2.16] D. Yevick and B. Hermansson, “Soliton analysis with the propagating beam method,” Opt. Comm., vol. 47, pp.101-106, 1983.
[2.17] J. Trillo, S. Wabnitz, and G. I. Stegeman, “Nonlinear propagation and self-switching of ultrashort optical pulse in fiber nonlinear directional couplers: the normal dispersion regime,” IEEE J. Quantum Electron., vol. 25, pp. 1907-1916, 1989.
[2.18] M. D. Feit and J. A. Fleck, Jr., “Calculation of dispersion in graded-index multimode fibers by a propagation-beam method,” Appl. Opt., vol. 18, pp. 2843-2851, 1979.
[2.19] M. D. Feit and J. A. Fleck, Jr., “Computation of mode properties in optical fiber waveguides by a propagating beam method,” Appl. Opt., vol. 19, pp. 1154-1164, 1980.
[2.20] M. D. Feit and J. A. Fleck, Jr., “Computation of mode eigenfunctions in graded-index optical fibers by the propagating beam method,” Appl. Opt., vol. 19, pp. 2240-2245, 1980.
[2.21] M. D. Feit and J. A. Fleck, Jr., “Mode properties and dispersion of two optical fiber-index profiles by the propagating beam method,” Appl. Opt., vol. 18, pp. 3140-3150, 1980.
[2.22] W. Snyder, I. White, and K. J. Mitchell, “Radiation from bent optical waveguides,” Electron. Lett., vol. 11, pp. 332-333, 1975.
[2.23] L. Thylen, “The beam propagation method: an analysis of its applicability,” Opt. Quantum Electron., vol. 15, pp. 433-439, 1983.
[2.24] P. K. Wei, H. Y. Liu, and W. S. Wang, “Beam Propagation analysis of a tapered proton-exchanged lithium niobate optical wave guide,” IEEE Microwave and Guided Wave Lett., vol. 4, pp. 40-42, 1994.
[2.25] J. D. Vanroey, J. van der donk, and P. E. Lagasse, “Beam-propagation method: analysis and assessment,” J. Opt. Soc. Amer., vol. 71, pp. 803-810, 1981.
[2.26] J. Saijnmaa and D. Yevick, “Beam-propagation analysis of loss in bent optical waveguides and fibers,” J. Opt. Soc. Amer., vol. 73, pp. 1785-1791, 1983.
[2.27] A. J. Marcatili and S. E. Miller, “Improved relations describing directional control in electromagnetic wave guidance,” Bell Syst. Tech. J., vol. 48, pp. 2161-2188, 1969.
[2.28] L. Thylen and K. Yevick, “Beam propagation method in anisotropic media,” Appl. Opt., vol. 21, pp. 2751-2754, 1982.
[2.29] J. A. Fleck, Jr. and M. D. Feit, “Beam propagation in uniaxial anisotropic media,” J. Opt. Soc. Amer., vol. 73, pp. 920-926, 1983.
[2.30] D. Yeick and B. Hermansson, “Soliton analysis with the propagating beam method method,” Opt. Comm., vol. 47, pp. 101-106, 1983.
[2.31] H. Y. Liu and W. S. Wang, “Beam propagation analysis of the nonlinear tapered optical waveguide,” IEEE Microwave and Guided wave Lett., vol. 5, pp. 42-44, 1995.
[2.32] H. Y. Liu and W. S. Wang, “A novel 1×n power switch using oblique incidence to a nonlinear slab,” Appl. Phys. Lett., vol. 66, pp. 42-44, 1995.
[2.33] D. Yevick and B. Hermansson, “New approach to lossy optical waveguides,” Electon. Lett., vol. 21, pp. 1029-1030, 1985.
[2.34] B. M. Nyman and P. R. Prucnal, “Geometrical optical approach to beam propagation analysis,” Appl. Opt., vol. 26, pp. 1161-1162, 1987.
[2.35] J. J. Gtibble and J. M. Arnold, “Beam propagation method and geometrical opticals,” IEE Proc., vol. 135, pp. 343-348, 1988.
[2.36] P. Sanonetti, E. C. Caquot, and A. Carenco, “Design of semiconductor electrooptic directional coupler with the beam propagation method,” IEEE J. Lightwave Technol., vol. 7, pp. 385-389, 1989.
[2.37] Y. Chung and N. Dagli, “An assessment of finite difference beam prpagation method,” IEEE J. Quantum Electron., vol. 26, pp. 1335-1339, 1990.
[2.38] A Splett, M. Majd, and K. Petermann, “A novel beam prpagation method for large refractive index steps and large propagation distances,” IEEE Photon. Tech. Lett., vol. 3, pp. 466-468, 1991.
[2.39] J. H. Press, B. P. Flannrey, S. A. Teukolaky, and W. T. Vetterlin, “Numerical recipes: the art of scientific computing,” London Cambridge University Press, pp. 550-554.
[2.40] B. M. Nyman and P. R. Prucnal, “The modified beam propagation method,” IEEE J. Lightwave Tech., vol. 7, pp. 931-936, 1989.
[2.41] D. Yevick and B. Hermansson, “Bend structure calculation with the split-step fast Fourier transform technique,” Solid State Comm., vol. 54, pp. 197-199, 1985.
[2.42] B. Hermansson and D. Yevick, “Numerical analysis of the modal eigenfunctions of chirped and unchirped multiple-stripe-geometry laser arrays,” J. Opt. Soc. Amer, A, vol. 4, pp. 379-390, 1987.
[2.43] S. N. Radciffe and T. P. Young, “New low-loss structures for high-density integrated optical switch arrays,” IEEE J. Selected Area. In Comm., vol. 6, pp. 1169-1177, 1988.
[2.44] D. Yevick and B. Hermansson, “New fast Fourier transform and finite-element approaches to the calculation of multiple-sstripe-geometry laser modes,” J. Appl. Phys., vol. 59, pp. 1769-1771, 1986.
[2.45] Y. Chung and N. Dagli, “Analysis of Z-invariant and Z-variant semicondustor rib waveguides by explicit finite difference beam propagation method with nonuniform mesh configuration,” IEEE J. Quantum Electron., vol. 27, pp. 2296-2305, 1991.
[2.46] Y. Chung and N. Dagli, “Explicit finite difference beam propagation method: application to semiconductor rib waveguide Y-junction,” Electron. Lett., vol. 26, pp. 711-713, 1990.
[2.47] W. P. Huang, C. L. Xu, S. T. Chu, and S. K. Chaudhuri, “A vector beam propagation method for guided-wave optics,” IEEE Photon. Tech. Lett., vol. 3, pp. 910-913, 1991.
[2.48] P. L. Liu and B. J. Li, “Study of birefringence in waveguide devices using the semivectorial beam propagation method,” IEEE Photon. Tech Lett., vol. 3, pp. 913-915, 1991.
[2.49] W. P. Huang, C. L. Xu, and S. K. Chaudhuri, “A finite-differnce vector beam propagation method for three-dimensional waveguide structures,” IEEE Photon. Tech Lett., vol. 4, pp. 148-151, 1992.
[2.50] G. R. Hadley, “Transparent boundary condition for beam propagation,” Opt. Lett., vol. 16, pp. 624-626, 1991.
[2.51] G. R. Hadley, “Transparent boundary condition for beam propagation method,” IEEE J. Quantum Electron., vol. 28, pp. 363-370, 1992.
第 三 章
[3.1] M. N. Armenise, “Fabrication techniques of lithium niobate waveguides,” IEE proc., vol. 135, pp. 85-91, 1988.
[3.2] I. P. Kaminow and J. R. Carruthers, “Optical waveguiding layer in LiNbO3 and LiTaO3,” Appl. Phys. Lett., vol. 22, pp. 326-328, 1973.
[3.3] J. R. Carruthers, I. P. Kaminow, and L.W. Stulz, “Diffusion kinetics and optical waveguiding properties of outdiffused layers in lithium niobate and lithium tantalate,” Appl. Opt., vol. 13, pp. 2333-2342, 1974.
[3.4] R. V. Schmidt and I. P. Kaminow “Metal-diffused optical waveguides in lithium niobate,” Appl. Phys. Lett., vol. 25, pp. 458-460, 1974.
[3.5] G. J. Griffiths and R. J. Esdaile, , “Analysis of titanium diffused planar optical waveguides in lithium niobate,” IEEE J. Quantum Electron., vol. 20, pp. 149-159, 1984.
[3.6] J. L. Jackell, “Suppression of outdiffusion in Ti diffused LiNbO3: a review,” J. Opt. Commun., vol. 3, pp. 82-85, 1982.
[3.7] K. S. Buritskii and V. A. Chernykh, “Properties of Ti:LiNbO3 waveguides with suppressed outdiffusion of LiO2,” Sov. J. Quantum Electron., vol. 16, pp. 1424-1426, 1986.
[3.8] M. E. Twigg, D. M. Maher, S. Nakahara, T. T. Sheng, and R. J. Holmes, “Study of structural faults in Ti-diffused lithium niobate,” Appl. Phys. Lett., vol. 50, pp. 501-503, 1987.
[3.9] J. Singh and R. M. De La Rue, “An experimental study of inplane light scattering in titanium diffused y-cut LiNbO3 optical waveguides,” J. Lightwave Tech., vol. 3, pp. 67-76, 1985.
[3.10] M. Fukuma, J. Noda, and H. Iwasaki, “Optical properties in titanium-diffused LiNbO3 strip waveguides,” J. Appl. Phys., 1978, vol. 49, pp. 3693-3698, 1978.
[3.11] P. K. Wei and W. S. Wang, “Fabrication of lithium niobate optical channel waveguides by nickel indiffusion,” Microwave and Opt. Tech. Lett., vol. 7, pp. 219-221, 1994.
[3.12] P. K. Wei and W. S. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE. Photon. Technol. Lett., vol. 6, pp. 245-248, 1994.
[3.13] Y. P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang, “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Technol. Lett., vol. 8, pp. 548-550, 1996.
[3.14] Y. P. liao, R. C. Lu, and W. S. Wang, “Passive Ni:LiNbO3 polarization splitter at 1.3 m wavelength,” Electron. Lett., vol. 32, pp. 1003-1005, 1996.
[3.15] 楊志華,「鋅鎳同步擴散式鈮酸鋰光波導之製造」,國立台灣大學電機工程學研究所碩士論文,1996。
[3.16] 廖裕評,「金屬擴散式極化分離器之研製」,國立台灣大學電機工程學研究所博士論文,1996。
[3.17] W. S. Wang, Y. P. Liao, and C. H. Yang, “Nickel-indiffusion waveguide for TE-TM mode splitter in lithium niobate,” International Journal of High Speed Electronics and Systems, vol. 8, pp. 621-642, 1997.
[3.18] R. C. Twu, C. C. Huang, and W. S. Wang, “Zn indiffsion waveguide polarizer on a Y-cut LiNbO3 at 1.32m wavelength,” IEEE Photon. Tech. Lett., vol. 12, pp. 161-163, 2000.
[3.19] J. Noda, M. Fukuma, and S. Saito, “Effect of Mg diffusion on Ti-diffused LiNbO3 waveguides”, J. Appl. Phys., vol. 49, pp. 3150-3154, 1978.
[3.20] C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, “Fabrication of Magnesium-Oxide-induced lithium outdiffusion waveguides,” IEEE Photon. Tech. Lett., vol. 6, pp. 872-875, 1992.
[3.21] P. C. Noutsios and G. L. Yip, “Shallow buried waveguides made by purely thermal migration of K+ion in glass,” Opt. Lett., vol. 15, pp. 212-214, 1990.
[3.22] G. L. Yip, P. C. Noutsios, and K. Kishioka, “Characteristics of optical waveguides made by electric-field-assisted K+-ion exchange,” Opt. Lett., vol. 15, pp. 789-791, 1990.
[3.23] P. Poyhonen, S. Honkanen, and A. Tervonen, “Inverse ion-exchange method for glass waveguide fabrication,” Opt. Lett., vol. 15, pp. 1206-1208, 1990.
[3.24] E. Giorgetti, D. Grando, L. Palchetti, and S. Sottini, “Thermal annealing of K+-Na+ ion-exchanged waveguides,” Opt. Lett., vol. 20, pp. 1374-1376, 1995.
[3.25] M. L. Shah, “Optical waveguide in LiNbO3 by ion exchange technique,” Appl. Phys. Lett., vol. 26, pp. 652-653, 1975.
[3.26] Y. X. Chen, W. S. C. Chang, S. S. Lau, L. Wielunski, and R. L. Holman, “Characterization of LiNbO3 waveguides exchanged in TlNO3 solution”, Appl. Phys. Lett., vol. 40, pp. 10-12, 1982.
[3.27] J. L. Jackel and C. E. Rice, “Variation in waveguides fabricated by immersion of LiNbO3 in AgNO3 and TlNO3 : the role of hydrogen”, Appl. Phys. Lett., vol. 41, pp. 508-510, 1982.
[3.28] J. L. Jackel and C. E. Rice, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett., vol. 41, pp. 607-608, 1982.
[3.29] De Michelli, M. Botineau, J. Sibillot, P. Ostrowsky, D. B., and Papuchon M. “Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate,” Opt. Commun., vol. 42, pp. 101-103, 1982.
[3.30] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Composition control in proton exchanged LiNbO3,” Electron Lett., vol. 19, pp. 387-388, 1983.
[3.31] Campari, A. Ferrari, C. Mazzi, G. Summonte, C. Alshukri, S. M. Dawar, A. L. De La Rur, R. M., and Nutt, A. C. G., “Strain and surface damage induced by proton exchange in y-cut LiNbO3,” J. Appl. Phy., vol. 58, pp. 4521-4524, 1985.
[3.32] S. A. Sanford and W. C. Robinson, “Secondary-ion mass spectroscopy characterisation of proton-exchanged LiNbO3 waveguides,” Opt. Lett., vol. 10, pp. 190-192, 1985.
[3.33] T. Findakly, P. Suchoski, and F. Leonberger, “High-quality LiTaO3 integrated-optical waveguides and devices fabricated by the annealed-proton-exchange technique,” Opt. Lett., vol. 13, pp. 797-799, 1988.
[3.34] P. G. Suchoski, T. Findakly, and F. Leonberger, “Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation,” Opt. Lett., vol. 13, pp. 1050-1052, 1988.
[3.35] A. Loni, G. Hay, R. M. D. L. Rue, and J. M. Winfield, “Proton-exchanged LiNbO3 waveguides: The effects of post-exchange annealing and buffered melts as determined by infrared spectroscopy, optical waveguide measurements, and hydrogen isotopic exchange reactions,” J. Lightwave Tech., vol. 7, pp. 911-919, 1989.
[3.36] M. M. Howerton, W. K. Burns, P. R. Skeath, and A. S. Greenblatt, “Dependence of refractive index on hydrogen concentration in proton exchanged,” IEEE J. Quantum Electron., vol. 27, pp. 593-601, 1991.
[3.37] T. Veng, and T. Skettrup, “Ion exchange model for  phase proton exchange waveguides in LiNbO3,” J. Lightwave Tech., vol. 16, pp. 646-649, 1998.
[3.38] F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate - a novel processing technique,” J. Lightwave Tech., vol. 10, pp. 1606-1609, 1992.
[3.39] J. Webjorn, “Structural influence of proton exchange on domain-inverted lithium niobate revealed by means of selective etching,” J. Lightwave Tech., vol. 11, pp. 589-593, 1993.
[3.40] J. M. Naden and B. L. Weiss, “Optical properties of planar waveguides formed by He+ implantation in LiNbO3,” J. Lightwave Tech., vol. 3, pp. 855-858, 1985.
第 四 章
[4.1] L. D. Hutcheson, I. A. White, and J. Burke, “Comparison of bending losses in integrated optical circuits,” Opt. Lett., vol. 5, pp. 276-278, 1980.
[4.2] A. W. Snyder and D. J. Mitchell, “Bending losses of multimode optical fibres,” Electron. Lett., vol. 10, pp. 11-12, 1974.
[4.3] A. W. Snyder, I. White, and D. J. Mitchell, “Radiation from bent optical waveguides,” Electron. Lett., vol. 11, pp. 332-333, 1975.
[4.4] H. Takeuchi and K. Oe, “Low-loss single-mode GaAs/AlGaAs miniature optical waveguides with straight and bending structures,” J. Lightwave Technol., vol. 7, pp. 1044-1053, 1989.
[4.5] J. D. Love, “Application of a low-loss criterion to optical waveguides and devices,” IEEE Proc., vol. 136, pp. 225-228, 1989.
[4.6] W. J. Minford, S. K. Korotky, and R. C. Alferness, “Low-loss Ti:LiNbO3 waveguide bends at  = 1.3 *m,” IEEE J. Quantum Electron., vol. 18, pp. 1802-1806, 1982.
[4.7] L. Lerner, “Minimum bending loss interconnection for integrated optics waveguides,” Electron. Lett., vol. 29, pp. 733-735, 1993.
[4.8] I. Mansour, and C. G. Someda, “Numerical optimization procedure for low-loss sharp bends in Mgo co-doped Ti:LiNbO3 waveguides,” IEEE Photon. Technol. Lett., vol. 7, pp. 81-83, 1995.
[4.9] H. Sasaki and N. Mikoshiba, “Normalized power transmission in single-mode optical branching waveguides,” Electron. Lett., vol. 17, pp. 136-138, 1981.
[4.10] M. J. Taylor and E. R. Schumacher, “Measured losses in LiNbO3 waveguide bends,” Appl. Opt., vol. 19, pp. 3048-3050, 1980.
[4.11] T. Shiina, K. Siraishi, and S. Kawakami, “Waveguide-bend configuration with low-loss characteristics,” Opt. Lett., vol. 11, pp. 736-738, 1986.
[4.12] T. M. Benson, “Etched-wall bent-guide structure for integrated optics in III-V semiconductors,” J. Lightwave Technol., vol. 2, pp. 31-34, 1984.
[4.13] E. Gini, G. Guekos, and H. Melchior, “Low loss corner mirrors with 45o deflection angle for integrated optics,” Electron. Lett., vol. 28, pp. 499-501, 1992.
[4.14] H. H. Hanza, P. L. Chu, and J. Nayyer, “Low-loss optical waveguide-bend configuration with curved corner reflector,” Electron. Lett., vol. 28, pp. 2283-2285, 1992.
[4.15] R. Roijen, G. L. A. Hofstad, M. Groten, J. M. M. Heyden, P. J. A. Thijs, and B. H. Verbeek, “Fabrication of low-loss integrated optical corner mirrors,” Appl. Opt., vol. 32, pp. 3246-3248, 1993.
[4.16] H. F. Taylor, “Lower loss at directional change in dielectric waveguides,” Appl. Opt., vol. 13, pp. 642-647, 1974.
[4.17] L. M. Johnson and F. J. Leonberger, “Low-loss LiNbO3 waveguide bends with coherent coupling,” Opt. Lett., vol. 8, pp. 111-113, 1983.
[4.18] S. K. Korotky, E. A. J. Marcatili, J. J. Veselka, and R. H. Bosworth, “Greatly reduced losses for small-radius bends in Ti:LiNbO3 waveguides,” Appl. Phys. Lett., vol. 8, pp. 92-94, 1986.
[4.19] K. Hirayama and M. Koshiba, “A new low-loss structure of abrupt bend in dielectric waveguides,” J. Lightwave Technol., vol. 10, pp. 563-569, 1992.
[4.20] H. B. Lin, J. Y. Su, P. K. Wei, and W. S. Wang, “Design and application of very low-loss abrupt bends in optical waveguides,” IEEE J. Quantum Electron., vol. 30, pp. 2827-2835, 1994.
[4.21] D. Nir, Z. Weissman, S. Ruschin, and A. Hardly, “Periodically segmented waveguides in Ti:LiNbO3,” Opt. Lett., vol. 19, pp. 1732-1734, 1994.
[4.22] R. C. Lu, Y. P. Liao, H. B. Lin, and W. S. Wang, “Design and fabrication of wide-angle abrupt bends on lithium niobate,” IEEE J. Selected Topics in Quantum Electron., vol. 2, pp. 215-220, 1996.
[4.23] M.S. Stern, “Semivectorial polarization finite difference method for optical waveguides with arbitrary index profiles,” IEE Proc. J, vol. 135, pp. 56-63, 1988.
[4.24] M. D. Feit and J. A. Fleck Jr., “Calculations of dispersion in graded-index multimode fibers by a propagating beam-method,” Appl. Opt., vol. 18, pp. 2843-2851, 1979.
[4.25] P. L. Liu and B. J. Li, “Study of form birefringence in waveguide devices using the semivectorial beam propagation method,” IEEE Photon. Technol. Lett., vol. 3, pp. 913-915, 1991.
[4.26] Y. Chung and N. Dagli, “An assessment of finite difference beam propagation methods,” IEEE J. Quantum Electron., vol. 26, pp. 1335-1339, 1990.
[4.27] Y. Chung and N. Dagli, “Analysis of z-invariant and z-variant semiconductor rib waveguides by explicit finite difference beam propagation method with nonuniform mesh configuration,” IEEE J. Quantum Electron., vol. 27, pp. 2296-2305, 1991.
[4.28] Y. Chung and N. Dagli, “Explicit finite difference beam propagation method: Application to semiconductor rib waveguide Y-junction analysis,” Electron. Lett., vol. 26, pp. 711-713, 1990.
[4.29] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett., vol. 41, pp. 607-608, 1982.
[4.30] M. De Micheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, “Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate,” Opt. Commun., vol. 42, pp. 101-103, 1982.
[4.31] D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton-exchange slab optical waveguides in Z-cut LiNbO3,” J. Appl. Phys., vol. 54, pp. 6218-6220, 1983.
[4.32] F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate-a novel processing technique,” J. Lightwave Technol., vol. 10, pp. 1606-1609, 1992.
第 五 章
[5.1] M. Kobayashi, H. Terui, and K. Egashira, “An optical waveguide TE-TM mode splitter,” Appl. Phys. Lett., vol. 32, pp.300-302, 1978.
[5.2] O. Mikami, “LiNbO3 coupled-waveguided TE/TM mode splitter,” Appl. Phys. Lett., vol. 36, pp.491-493, 1980.
[5.3] D. Yap, L. M. Johnson, and G. W. Pratt, Jr., “Passive Ti:LiNbO3 channel waveguide TE-TM mode splitter,” Appl. Phys. Lett., vol. 44, pp. 583-585, 1984.
[5.4] K. Thyagarajan, S. Diggavi, and A. K. Ghatak, “Integrated-optic polarization-splitting directional coupler,” Opt. Lett., vol. 14, pp. 1333-1335, 1989.
[5.5] H. Maruyama, M. Haruna, and H. Nishihara, “TE-TM mode splitter using directional coupling between heterogeneous waveguides in LiNbO3,” J. Lightwave Technol., vol. 13, pp. 1550-1554, 1995.
[5.6] M. Masuda G. L. Yip, “An optical TE-TM mode splitter using a LiNbO3 branching waveguide,” Appl. Phys. Lett., vol. 37, pp. 20-22, 1980.
[5.7] J. Čtyroky, J. Janta, and J. Prokš, “Two-mode-interference Ti : LiNbO3 electro-optic polarisation-independent switch or polarisation splitter,” Electron. Lett., vol. 27, pp. 965-966, 1991.
[5.8] N. Goto and G. L. Yip, “A TE-TM mode splitter in LiNbO3 by proton exchange and Ti diffusion,” J. Lightwave Technol., vol. 7, pp. 1567-1574, 1989.
[5.9] Y. Shanai, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic polarization splitter on silicon,” Appl. Phys. Lett., vol. 56, pp.120-121, 1990.
[5.10] J. J. G. M. van der Tol and J. H. Laarhuis, “A polarization splitter on LiNbO3 using only titanium diffusion,” J. Lightwave Technol., vol. 9, pp. 879-886, 1991.
[5.11] P. K. Wei. and W. S. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett., vol. 6, pp. 245-248, 1994.
[5.12] P. K. Wei. and W. S. Wang, “Novel TE-TM mode splitter on lithium noibate using nickel indiffused and proton exchange techniques,” Electron. Lett., vol. 30, pp. 35-37, 1994.
[5.13] Y. P. Liao, R. C. Lu, C. H. Yang, and W. S. Wang, “Passive Ni: LiNbO3 polarization splitter at 1.3 *m wavelength,” Electron. Lett., vol. 32, pp. 1003-1005, 1996.
[5.14] W. S. Wang, Y. P. Liao, and C. H. Yang, “Nickel-indiffusion waveguide for TE-TM mode splitter in lithium niobate,” International Journal of High Speed Electronics and Systems, vol. 8, pp. 621-642, 1997.
[5.15] C. H. Chang and W. S. Wang, “A novel Y-branch waveguide for power dividing and mode splitting,” Opt. And Quan. Electron., vol. 28, pp. 1371-1377, 1996.
[5.16] K. G. Han, S. Kim, D. H. Kim, J. C. Jo, and S. S. Choi, “Ti:LiNbO3 polarization splitters using an asymmetric branching waveguide,” Opt. Lett., vol. 16, pp. 1086-1088, 1991.
[5.17] M. Izutsu, Y. Nakai, and T. Sueta, “Normalized power transmission in single mode optical branching waveguides,” Electron. Lett., vol. 17, pp. 136-138, 1984.
[5.18] R. C. Lu, Y. P. Liao, H. B. Lin, and W. S. Wang, “Design and fabrication of wide-angle abrupt bends on lithium niobate,” IEEE J. Selected Topics in Quantum Electron., vol. 2, pp. 215-220, 1996.
[5.19] Y. P. Liao, D. R. Chen, R. C. Lu, and W. S. Wang, “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Technol. Lett., vol. 8, pp. 548-550, 1996.
[5.20] M. D. Micheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, “Fabrication and characterization of titanium-indiffused proton exchanged(TIPE) waveguides in lithium niobate,” Opt. Commun., vol. 42, pp. 101-103, 1982.
[5.21] M.S. Stern, “Semivectorial polarization finite difference method for optical waveguides with arbitrary index profiles,” IEE Proc. J, vol. 135, pp. 56-63, 1988.
[5.22] M. D. Feit and J. A. Fleck Jr., “Calculations of dispersion in graded-index multimode fibers by a propagating beam-method,” Appl. Opt., vol. 18, pp. 2843-2851, 1979.
第 六 章
[6.1] H. Sasaki, E. Shiki, and N. Mikoshiba, “Propagation characteristics of optical guided waves in asymmetric branching waveguides,” IEEE J. Quantum Electron., vol. 17, pp. 1051-1057, 1981.
[6.2] M. Kuznetsov, “Radiation loss in dielectric waveguide Y-branch structures,” J. Lightwave Technol., vol. 3, pp. 674-677, 1985.
[6.3] K. Tsutsumi, Y. Imada, H. Hirai, and Y. Yuba, “Analysis of single mode optical Y-junctions by the bounded step and bend approximation,” J. Lightwave Technol., vol. 6, pp. 590-600, 1988.
[6.4] T. G. Huang , and G. J. Simonis, “Theoretical and experimental comparison of an adjustable Y-junction switch,” Opt. Lett., vol. 19, pp. 2107-2109, 1994.
[6.5] O. Hanaizumi, M. Miyagi, and S. Kawakami, “Low radiation loss Y-junctions in planar dielectric optical waveguides,” Opt. Commun., vol. 51, pp. 236-238, 1984.
[6.6] W. Y. Hung, H. P. Chan, and P. S. Chung, “Novel design of wide-angle single-mode symmetric Y-junction,” Electron. Lett., vol. 24, pp. 18-19, 1988.
[6.7] F. S. Chu and P. L. Liu, “Low-loss coherent-coupling Y branches,” Opt. Lett., vol. 16, pp. 309-311, 1991.
[6.8] H. B. Lin, R. S. Cheng, and W. S. Wang, “Wide-angle low-loss single-mode symmetric Y-junctions,” IEEE Photon. Tech. Lett., vol. 6, pp. 825-827, 1994.
[6.9] T. D. Ni, D. Sturzebecher, M. Cummings, and B. Perlman, “Design, fabrication, and test of wide-angle low-loss Y-junction hybrid polymer couplers,” Appl. Phys. Lett., vol. 67, pp. 1651-1652, 1995.
[6.10] R. C. Lu, Y. P. Liao, H. B. Lin, and W. S. Wang, “Design and fabrication of wide-angle abrupt bends on lithium niobate,” IEEE J. Selected Topics in Quantum Electron., vol. 2, pp. 215-220, 1996.
[6.11] R. C. Lu, Y. P. Liao, and W. S. Wang, “Design of symmetric Y-branch with a substrate prism and two tapered output waveguides on LiNbO3,” IEEE Photon. Technol. Lett., vol. 10, pp. 1274-1276, 1998.
[6.12] M. S. Stern, “Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles,” IEE Proc. J., vol. 135, pp.56-63, 1988.
[6.13] P. L. Liu and B. J. Li, “Study of form birefringence in waveguide devices using the semivectorial beam propagation method,” IEEE Photon. Technol. Lett., vol. 3, pp. 913-915, 1991.
第 七 章
[7.1] H. Sasaki and N. Mikoshiba, “Normalized power transmission in single-mode optical branching waveguides,” Electron. Lett., vol. 17, pp. 136-138, 1981.
[7.2] J. D. Love, “Application of a low-loss criterion to optical waveguides and devices,” IEE Proc., vol. 136, Pt. J, pp. 225-228, 1989.
[7.3] T. Shiina, K. Siraishi, and S. Kawakami, “Waveguide-bend configuration with low-loss characteristics,” Opt. Lett., vol. 11, pp. 736-738, 1986.
[7.4] T. M. Benson, “Etched-wall bent-guide structure for integrated optics in III-V semiconductors,” J. Lightwave Technol., vol. 2, pp. 31-34, 1984.
[7.5] P. Buchman and H. Kaufmann, “GaAs single-mode rib waveguides with reactive ion-etched totally reflecting corner mirrors” IEEE. J. Lightwave Tech., vol. 3, pp.785-788, 1985.
[7.6] E. Gini, G. Guekos, and H. Melchior, “Low loss corner mirrors with 45o deflection angle for integrated optics,” Electron. Lett., vol. 28, pp. 499-501, 1992.
[7.7] H. H. Hanza, P. L. Chu, and J. Nayyer, “Low-loss optical waveguide-bend configuration with curved corner reflector,” Electron. Lett., vol. 28, pp. 2283-2285, 1992.
[7.8] R. Roijen, G. L. A. Hofstad, M. Groten, J. M. M. Heyden, P. J. A. Thijs, and B. H. Verbeek, “Fabrication of low-loss integrated optical corner mirrors,” Appl. Opt., vol. 32, pp. 3246-3248, 1993.
[7.9] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguide in LiNbO3”, Appl. Phys. Lett., vol. 41, pp 607-609, 1982.
[7.10] M.S. Stern, “Semivectorial polarization finite difference method for optical waveguides with arbitrary index profiles,” IEE Proc. J, vol. 135, pp. 56-63, 1988.
[7.11] P. L. Liu and B. J. Li, "Study of form birefringence in waveguide devices using the semivectorial beam propagation method," IEEE Photon. Technol. Lett., vol. 3, pp. 913-915, 1991.
[7.12] Y. Chung and N. Dagli, “An assessment of finite difference beam propagation methods,” IEEE J. Quantum Electron., vol. 26, pp. 1335-1339, 1990.
[7.13] Y. Chung and N. Dagli, “Analysis of z-invariant semconductor rib waveguides by explicit finite difference beam propagation method with nonuniform mesh configuration,” IEEE J. Quantum Electron., vol. 27, pp. 2296-2305, 1991.
[7.14] Y. Chung and N. Dagli, “Explicit finite difference beam propagation method: Application to semiconductor rib waveguide Y-junction analysis,” Electron. Lett., vol. 26, pp. 711-713, 1990.
[7.15] R. C. Lu, Y. P. Liao, and W. S. Wang, “Analysis of reflecting-type waveguide bend on LiNbO3,” Optical and Quantum Electron., vol. 32, pp. 313-325, 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top