跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 05:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳玉彬
研究生(外文):YuBinChen
論文名稱:焦電薄膜紅外線感測器設計與製造
論文名稱(外文):Design and Fabrication of Pyroelectric Film Infrared Ray Sensor
指導教授:張所鋐
指導教授(外文):SawHonChang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:103
中文關鍵詞:有機金屬堆積法焦電性PZT紅外線感測器
外文關鍵詞:MODPyroelectricityPZTIR Sensor
相關次數:
  • 被引用被引用:9
  • 點閱點閱:855
  • 評分評分:
  • 下載下載:160
  • 收藏至我的研究室書目清單書目收藏:0
本文針對焦電薄膜感測器作一研究,應用目的為結束無線滑鼠的休眠狀態,從感測器的焦電原理、感測器構造設計,並利用微機電製程製作感測器所需之焦電薄膜,規劃感測器完整製程並進行性能測試,成功的感測紅外線尤其是人體的紅外線並產生訊號,符合預期目標應用。
本文利用有機金屬堆積法製作焦電薄膜PZT,並嘗試不同的配方與製程參數,得到退火溫度700 ℃、Zr/Ti=53/47、Pb過量10%之PZT薄膜為高良率且厚度可超過1 mm 薄膜,在0~100 ℃下,焦電係數為1.52×10-8 (C/cm2 K),不僅適合作為焦電感測器材料,也適合應用在機械式感測器、致動器等。
而感測器的製程上,我觀察並歸納了PZT薄膜破壞的原因,並提出可行的方法改善PZT的製程,同時設計並具體應用在感測器的製作流程上,不僅具有重現性,在操作頻率0.1~2.0 Hz、感測距離10~20 mm下可以感測到人體的紅外線輻射,符合預期的目標。
For waking up a wireless mouse in sleeping mode, I did a research on pyroelectric film sensor. This paper studies pyroelectricity, sensor design, and MEMS fabrication process. After manufacturing the pyroelectric film sensor, I successfully did experience on IR source (Heat Oven) even on human and got perfect response.
The pyroelectric film is composed of PZT and fabricated in MOD. After trying different prescription and processing parameters, I fond out the PZT film which Zr/Ti=53/47, Pb exceeding 10% and annealed at 700 ℃ having good performance. The film thickness could be more than 1 mm. Under 0~100 ℃, the film pyroelectric coefficient is 1.52×10-8 (C/cm2 K). The PZT film is suitable not only for pyroelectric sensor material, but also for mechanical sensor and actuator.
I observed and recorded the reason of film destruction and brought up a practicable method to improve the fabrication process. The human infrared ray could be sensed by t he PZT pyroelectric sensor in the range of 10 ~ 20 mm, operating frequency 0.1 ~ 2.0 Hz. It could be reaped manufactured and fit our goal.
誌謝
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 vi
表目錄 xi
一、 導論 1
1. 研究動機 1
2. 研究目標 2
二、 感測器前期研究 3
1. 感測技術方向 3
(1). 人體溫及熱輻射分佈 3
(2). 紅外線頻譜與人體紅外線特定波長 4
(3). 紅外線感測原理及簡介 5
2. 基本測試實驗 10
(1).市售一般之光感測器性能量測 10
(2).市售焦電紅外線感測器 12
3. FT-IR Spectroscopy(Spectrum 2000)測量紅外線頻譜 15
(1).儀器介紹 15
(2).量測結果 18
三、 感測器設計 22
1. 焦電感測器原理 22
(1).焦電效應 22
(2). 焦電感測器響應特性 23
2. 焦電感測器材料 25
(1).焦電材料 25
(2).紅外線吸收層材料 27
(3).下電極材料 30
3. 感測器結構與設計 30
(1).感測器結構 30
(2).感測器設計 31
(3).感測器定稿與光罩圖案 34
四、 焦電薄膜製作與改良 36
1. 焦電薄膜製程 36
(1). 焦電薄膜製作技術 36
(2). 薄膜製程概述 38
(3).薄膜製程參數 41
(4).薄膜性質量測 43
2. 參數更動與結果 48
(1). 鍍著層數與退火曲線 48
(2). 鉛過量比與Zr/Ti之莫耳數比例 53
(3). 配方優劣比較與最佳配方 55
(4).薄膜破裂成因分析及改良 59
(5).薄膜性能測試 68
五、 感測器製作與測試 73
1. 感測器製作流程 73
(1).光罩設計與製程規劃 73
(2).預溶液配置與晶圓清洗 77
(3).鉑鈦金屬與焦電薄膜蝕刻 78
(4).去除光阻步驟 80
(5).塗佈銀膠 83
(6).極化過程 84
2. 感測器測試 88
(1).紅外線源頻譜測量 88
(2).紅外線源產生紅外線之功率 89
(3).感測器所受溫度變化 91
(4).焦電感測器產生訊號 92
(5).感測器於不同距離下所產生響應訊號 96
六、 結論與展望 98
七、 參考文獻 100
作者簡歷
[1] 湯欽昕, “鋯鈦酸鉛薄膜積體化焦電式紅外線感測器,” 國立台灣海洋大學電機工程學研究所碩士論文, 1997.
[2] 安豐沅, “不同厚度之積體化鋯鈦酸鉛薄膜焦電式紅外線感測元件之製作及特性研究,” 國立台灣海洋大學電機工程學研究所碩士論文, 1998.
[3] 劉健群, “鋯鈦酸鉛薄膜金氧半場效電晶體積體化焦電式紅外線感測元件於矽基板之製作研究,” 國立台灣海洋大學電機工程學研究所碩士論文, 1999.
[4] T. Kousuke, S. Kenichi, T. Toshiharu, K. Kazuhiko, N. Shoichi, and K. Yukinori, “Modulation-type pyroelectric infrared detector and its application,” Sensors and Actuators, A: Physical, Vol. 40, No. 2, pp. 103-109, 1994.
[5] R. Takayama, “Pyroelectric infra-red sensors made of La-modified PbTiO3 thin films and their applications,” Procs. 7th Int. Symp. Int. Ferroelectrics (ISIF’95), Colorado Springs, Colorado., USA, March 1995.
[6] J. C. Gunter, S. K. Streiffer, and A. I. Kingon, ”Low temperature preparation of sol-gel PZT thin films for pyroelectric and other integrated devices,” Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics, Vol. 1 , pp. 223 —226, 1996.
[7] 翁念瑜, “熱紅外線移動裝置之系統分析,” 國立交通大學光電工程研究所碩士論文, 1993.
[8] 洪台麟等譯, ”紅外線,” 徐氏基金會, 1970.
[9] D. richard, and Jr. Hdson, “Infrared System Engineering,” Wiley, New York, 1983.
[10] 賴耿陽編譯, ”紅外線工學基礎應用,” 紅外線技術研究會編, 臺灣復文興業, 1995.
[11] 龔肇隆編譯, “紅外光,” 復興書局, 1971.
[12] S. M. Sze, “Semiconductor Sensors,” John Wiley & Sons, Inc., 1994.
[13] 劉俊廷, ”砷化銦金屬絕緣體半導體電容與紅外線光偵檢器之研究,” 國立台灣大學電機工程研究所碩士論文, 1998.
[14] K. Morinaka, K. Hashimoto, S. Tanaka, and N. Yoshiike, ” Human information sensor,” Sensors and Actuators, A: Physical, Vol. 66, No. 1-3, pp. 1-8, 1998.
[15] 巫瑞琪, “輻射溫度計,” 國立中央大學光電科學研究所碩士論文, 1996.
[16] K. Hashimoto, Y. Makoto, M. Satoshi, M. Katsuya, and Y. Nobuyuki, “Development of people-counting system with human-information sensor using multi-element pyroelectric infrared array detector,” Sensors and Actuators, A: Physical, Vol. 58, No. 2, pp. 165-171, 1997.
[17] A. Patel and J. S. Obhi, “Ferroelectric thin films for integrated sensor and memory devices,” GEC Journal of Research, Vol. 12, No. 3, pp. 141-152, 1995.
[18] M. Kohli, C. Wuethrich, K. Brooks, B. Willing, M. Forster, P. Muralt, N. Setter, and P. Ryser, “Pyroelectric thin-film sensor array,” Sensors and Actuators, A: Physical, Vol. 60, No. 1-3, pp. 147-153, 1997.
[19] 邱建智, “焦電感測元件之製作及特性分析,” 國立中山大學電機工程研究所碩士論文, 1998.
[20] W. L. Warren, D. Dimos, H. N. Al-Shareef, M. V. Raymond, B. A. Tuttle, and G. E. Pike, “Links between electrical and optical fatigue in Pb(Zr,Ti)O3 thin films,” J. Am. Ceram. Soc., Vol. 79, No. 6, pp. 1714-1716, 1996.
[21] R. W. Whatmore, “Pyroeletric devices and materials,” Rep. Prog. Phys., Vol. 49, pp.1335-1386, 1986.
[22] X. Yuhuman, “Ferroelectric Materials and Their Applications,” Northland, 1991.
[23] K. Charles, “Introduction to Solid State Physics,” Wiley, New York, pp. 423-426, 1986.
[24] O. Y. Mang, J. S. Shie, and C. Tsao, ” Design and analysis of electrically calibrated tympanic thermometers,” Applied Optics, Vol. 37, No. 13, pp. 2708-2715, 1998.
[25] R. N. Schouten, “A new amplifier design for fast low-noise far-infrared detectors using a pyroelectric element,” Measurement Science & Technology, Vol. 9, No. 4, pp. 686-691, 1998.
[26] R. Freitag, and H. Meixner, “A sensor array for human-body detection based on pyroelectric polyvinylidene fluoride,” IEEE Transactio on Electrical Insulation, Vol. 24, No. 3, 1989.
[27] D. Esteve, F. Bauer, J. -P. Beconne, J. Clot, A. Mahrane, V. V. Pham, and J. J. Simonne, “Optimization of a turning passive IR watching detector,” Sensors and Actuators, A: Physical, Vol. 37-38, No. 2, pp. 198-201, 1993.
[28] P. C. A. Hammes, and P. P. L. Regtien, ”A pyroelectric matrix sensor using PVDF on silicon containing FET readout circuitry,” Sensors and Actuators, A: Physical, Vol. 37-38, No. 2, pp. 290-295, 1993.
[29] T. J. Boyle, D. Dimos, R. W. Schwartz, T. M. Alam, M. B. Sinclair, and C. D. Buchheit, “Aging characteristicts of a hybrid sol-gel Pb(Zr,Ti)O3 precursor solution” J. Mater. Res., Vol. 12, No. 4, pp. 1022-1030, Apr., 1997.
[30] T. Kousuke, S. Kenichi, T. Toshiharu, K. Kazuhiko, N. Shoichi, and K. Yukinori, “Modulation-type pyroelectric infrared detector and its application,” Sensors and Actuators, A: Physical, Vol. 40, No. 2, pp. 103-109, 1994.
[31] W. Zhu, Z. Q. Liu, M. S. Tse, and H. S. Tan, “Raman, FT-IR and dielectric studies of PZT 40/60 films deposited by MOD technology,” Journal of Material Science: Materials in Electronics, Vol. 6, pp. 369-374, 1995.
[32] B. Willing, M. Kohli, P. Muralt, N. Setter, and O. Oehler, “Gas spectrometry based on pyroelectric thin-film arrays integrated on silicon,” Sensors and Actuators, A: Physical, Vol. 66, No.1-3, pp. 109-113, 1998.
[33] 劉家誠, “微機電製程方形複合壓電薄版電極最佳化分佈之研究,” 國立台灣大學機械工程研究所碩士論文, 1999.
[34] J. P. Holman, “Heat Transfer,” Mc-GRAW-HILL, Inc., 1997.
[35] O. Y. Mang, J. S. Shie, and C. Tsao, ” Design and analysis of electrically calibrated tympanic thermometers,” Applied Optics, Vol. 37, No. 13, pp. 2708-2715, 1998.
[36] D. Setiadi, and P. P. L. Regtien, “Design of a VDF/TrFE copolymer-on-silicon pyroelectric sensor,” Proc. 8th IEEE Int. Symp. Electrets, Paris, France, pp. 967-972, 1994.
[37] Y. Chen, H. L. W. Chan, N. M. Hui, Y. W. Wong, and C. L. Choy, “Response of nanocomposite pyroelectric detectors,” Sensors and Actuators, A: Physical, No. 69, Vol. 2, pp. 156-165, 1998.
[38] A. Mansingh, "Fabrication and applications of piezo- and ferroelectric films,” Ferroelectrics, Vol. 102, pp. 69-84, 1990.
[39] M. Oikawa and K. Toda, "Preparation of Pb(Zr,Ti)O3 thin films by an electron beam evaporation technique,” Applied Physics Letters, Vol. 29, pp. 491-492, 1976.
[40] M. Adachi, T. Matsuzaki, T. Yamada, T. Shiosaki and A. Kawabata, "Sputter-deposition of [111]-axis oriented rhombohedral PZT films and their dielectric, ferroelecteic and pizeoelectric properties,” Japan Journal of Applied Physics, Vol. 26, pp. 550-553, 1987.
[41] J. B. Blum, "Electronic ceramics made by the Sol-Gel process,” Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes, Lisa C. Klein Eds. Park Ridge N. J., pp. 296-302, 1988.
[42] Q. F. Zhou, H. L. W. Chan and C. L. Choy, ”Nanocrystalline powder and fibres of lead zirconate titanante prepared by sol-gel process,” Journal of Materials Processing Technology, No. 63, pp. 281-285, 1997.
[43] T. J. Boyle, D. Dimos and R. W. Schwartz, et al., “Aging characteristics of a hybrid sol-gel Pb(Zr,Ti)O3 precursor solution,” J. Mater. Res., Vol. 12, No. 4, pp. 1022-1030, Apr, 1997.
[44] W. Zhu and R. W. Vest, "Metallo-organic decomposition technology for PZT films in memory applications,” Journal of Materials Processing Technology, Vol. 29, pp. 373-384, 1992.
[45] 楊士毅, "壓電薄膜製作與性質研究,” 國立台灣大學機械工程學研究所碩士論文, 1996.
[46] 鍾允昇, "微型壓電致動器之設計與製造,” 國立台灣大學機械工程學研究所碩士論文, 1996.
[47] 陳志清, "壓電薄膜表面彈性波元件之製作,” 國立台灣大學機械工程學研究所碩士論文, 1997.
[48] J. Fukushima, K. Kodaira and T. Matsushita, "Preparation of ferroelectric PZT films by thermal decomposition of organometallic compounds,” Journal of Materials Science, Vol. 19, pp. 595-598, 1984.
[49] G. Yi, Z. Wu and M. Sayer, "Preparation of Pb(Zr,Ti)O3 thin films by Sol-Gel processing: electrical, optical, and electro-optic properties,” Journal of Applied Physics, Vol. 64, No. 5, pp. 2717-2724, 1988.
[50] N. Tohge, S. Takahashi and T. Minami, "Preparation of PbZrO3-PbTiO3 ferroelectric thin films by the Sol-Gel process,” J. Am. Ceram. Soc., Vol. 74, No. 1, pp. 67-71, 1991.
[51] R. Ahlfanger, H. Bertagnolli, T. Ertel, B. Fridrich, A. Helmerich, U. Kolb, R. NaB, D. Peter and H. Schmidt, "Structural study of the formation of lead zirconate titanate via Sol-Gel Process,” Eurogel''91, S. Vilminot, R. Nass and H. Schmidt, Eds, Elsevier Science Publishers B.V., pp. 275-282, 1992.
[52] G. Teowee, J. M. Boulton, S. C. Lee and D. R. Uhlmann, "Electrical characterization of Sol-Gel derived PZT films,” Mat. Res. Soc. Symp. Proc., Vol. 243, pp. 255-261, 1992.
[53] L. Shi, S. B. Krupandihi and G. H. Haertling, "Development of ferroelectric Pb(ZrxTi1-x)O3 thin films by metallo-organic decomposition process and rapid thermal annealing,” Integrated Ferroelectrics, Vol. 1, pp. 111-127, 1992.
[54] S. Y. Chen and I. W. Chen, “Comparative role metal-organic decomposition-derived [100] and [111] in electrical properties of Pb(Zr,Ti)O3 thin films,” Japanese Journal of Applied Physics, Vol. 36, pp. 4451-4458, 1997.
[55] R. Bruchhaus, D. Oitzer, O. Eibl, U. Scheithauer and W. Hoesler, "Investigation of Pt bottom electrodes for "In-Situ" deposited Pb(Zr,Ti)O3 (PZT) thin films,” Mat. Res. Soc. Symp. Proc., Vol. 243, pp. 123-128, 1992.
[56] V. Kaushik, P. Maniar, A. Campbell, R. Jones, R. Moazzami, C. J. Mogab, R. Hance and R. Pyle, "Electron microscopy study of the influence of the adhesion Layer for Pt electrode on the microstructure of Sol-Gel crystallized PZT,” Mat. Res. Soc. Symp. Proc. , Vol. 310, pp. 209-214, 1993.
[57] J. Chen, K. R. Udayakumar, K.G.Brooks and L.E.Cross, "Rapid thermal annealing of Sol-Gel derived lead zirconate titanate thin films,” Journal of Applied Physics, Vol. 71, No.9, pp. 4465-4469, 1992.
[58] R. A. Lipeles and D. J. Coleman, “Effect of drying and annealing on metallo-organic solution deposition of PZT films,” Ultrastructure Processing of Advanced Ceramics, J. D. Mackenzie and D. R. Ulrich, Eds. New York, Wiley-Interscience, pp. 919-924, 1988.
[59] S. B. Lang, and M. Alexe, “Optimization and experimental verification of a pyroelectric bimorph radiation detector,” Proceedings of the 11th IEEE International Symposium, pp. 195—198, 1998.
[60] T. Sweeney, and R. W. Whatmore, “Electrophoretic deposition of PZT ceramic films,” Proceedings of the 10th IEEE International Symposium on Applications of Vol. 1, pp. 193-196, 1996.
[61] J. F. Roeder, I. S. Chen, P. C. Van Buskirk, H. R. Beratan, and C. M. Hanson, “Dielectric and pyroelectric properties of thin film PZT,” Proceedings of the 11th IEEE International Symposium, pp. 217—220, 1998.
[62] J. Huang, J. Lian, and R. C. Buchanan, “Pyroelectric properties of PZT(90/10) thin films on Pt/Si substrates,” Proceedings of the 10th IEEE International Symposium on Applications, Vol. 2, pp. 623-626, 1996.
[63] Y. Wang, D. Xunhu, D. Sun, and H. T. Chen, ”The applications of PZT95/5 ceramics by induced phase transformation,” Applications of Ferroelectrics, IEEE 7th International Symposium on 1991, pp. 513—516, 1990.
[64] L. Shi, S. B. Krupandihi and G. H. Haertling, "Development of ferroelectric Pb(ZrxTi1-x)O3 thin films by metallo-organic decomposition process and rapid thermal annealing,” Integrated Ferroelectrics, Vol. 1, pp. 111-127, 1992.
[65] D. J. Eichorst and C. J. Baron, "Effects of Platinum Electrode Structures on Crystallinity and Electrical Properties of MOD prepared PZT Capacitors,” Mat. Res. Soc. Symp. Proc., Vol. 310, pp. 201, 1993.
[66] H. S. Tzou and J. P. Zhong, “A linear theory of piezoelectric shell vibrations,” Journal of Sound and Vibration, Vol. 175, No. 1, pp. 77-88, 1994.
[67] J. S. Lee and L. Z. Jiang, “Exact electroelastic analysis of piezoelectric laminate via state space approach,” Int. J. Solids Structures, Vol. 33, No. 7, pp. 977-990, 1996.
[68] S. M. Sun, Y. X. Li, W. Ren, Q. Zhou, X. Q. Wu, M. Zhang and X. Yao, “Lead titanium thin films and fine powders derived from Sol-Gel process,” Ferroelectrics, Vol. 108, pp. 9-14, 1990.
[69] M. D. Liu, C. R. Lu, P. Y. Wang, Y. H. Rao, Y. Zeng, and C. Li, “Preparation of PZT ferroelectric thin films by Sol-Gel processing and their properties,” Sensors and Actuators A, Vol. 49, pp. 191-194, 1995.
[70] C. K. Lee, T. Itoh, and T. Suga, “Micromachined piezoelectric force sensors based on PZT thin films,” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 43, No. 4, pp. 553-559, 1996.
[71] RT 66A Standardized Ferroelectric Test System V2.1 Operating Manual, Radiant Technologies, 1992.
[72] 吳朗, 電子陶瓷壓電, 全欣資訊圖書股份有限公司, 1994.
[73] X. Yuhuan, “Ferroelectric Materials and Their Application,” North-Holland, 1991.
[74] 張所鋐, 楊士毅, "壓電薄膜微感測器研製," 中華民國第二十屆全國力學學會, 台北市, 12, 1996.
[75] 張所鋐, 楊士毅, "MOD法壓電薄膜研製與性能量測," 中國機械工程學會第十三屆全國學術研討會, 台北市, 11, 1996.
[76] 張所鋐, 鍾允昇, "微型壓電致動器設計與製造," 中國機械工程學會第十三屆全國學術研討會, 台北市, 11, 1996.
[77] W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics, Van Norstrand, New York, 1950.
[78] 董奕鍾, “微機電系統:非對稱方形壓電複合薄板之製作與分析,” 國立台灣大學機械工程學研究所碩士論文, 1998.
[79] A. Stephen Campbell, The Science and Engineering of Microelectronic Fabrication, Oxford University Press, New York, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top