跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 16:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:侯嘉洪
研究生(外文):Hou. Chia-Hung
論文名稱:添加飛灰助濾與高分子聚合物調理對污泥脫水/流變特性之影響
論文名稱(外文):Sludge conditioning with fly ash and polymer for dewatering characteristics and rheological properties
指導教授:李公哲李公哲引用關係
指導教授(外文):Li. Kung-Cheh
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:114
中文關鍵詞:飛灰高分子聚合物雙重調理毛細汲取時間比阻抗壓縮係數流變特性離心脫水機 帶濾脫水機
外文關鍵詞:Fly ashPolymerDual conditioningCapillary suction timeSpecific resistance to filtrationCoefficient of compressibilityRheologyCentrifugation Belt filter press
相關次數:
  • 被引用被引用:1
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係以火力發電廠飛灰作為助濾介質,配合高分子聚合物對污泥進行調理之工作,探討其對於脫水效率及流變特性的影響。
單以飛灰助濾進行物理調理時,對於無機污泥之脫水效率有較顯著的提升,對於生物污泥之脫水效率則無顯著影響。添加飛灰助濾,配合高分子聚合物進行雙重調理時,在離心脫水試驗及帶濾脫水試驗中,顯示對於無機污泥而言,與單獨使用高分子聚合物比較,雙重調理能減少高分子聚合物的加藥量,並提升污泥之脫水效率,增加污泥餅的固含量。然而對於生物污泥而言,雙重調理相對於化學調理,添加飛灰助濾對於生物污泥脫水效率並無顯著效應,污泥餅固含量僅隨著飛灰添加而增加。而污泥以離心機脫水時,毛細汲取時間與比阻抗為較佳之脫水指標,然而對於帶濾脫水機而言,以毛細汲取時間、比阻抗及壓縮係數作為脫水指標,則容易產生加藥不足之現象。
在污泥流變特性方面,無機污泥單獨以飛灰助濾時,添加適量飛灰能降低其降伏應力及外觀黏度,有利於污泥的脫水,然生物污泥則無降低之現象。當以化學調理及雙重調理進行脫水試驗時,則無機污泥隨著高分子聚合物加藥量的增加,其剪應力與剪應變之流變圖形由直線轉變成明顯具有尖峰之曲線,可作為判斷污泥顆粒是否已經凝聚成足夠強度、體積之膠羽的指標,惟對於生物污泥而言,則無明顯之尖峰曲線。再者,當無機及生物污泥進行化學調理及雙重調理時,在高分子聚合物加藥不足階段,由於膠羽體積、強度的逐漸增加,降伏應力與外觀黏度隨之上升;而在加藥過量階段,降伏應力與外觀黏度之上升,是由於殘留水中的高分子聚合物所致。因此,降伏應力曲線或外觀黏度曲線之反折點,可與毛細汲取時間及比阻抗相互比對,做為高分子聚合物之最適加藥量評估準則。

Fly ash from coal-fired power plant can be used as filter aid in sludge conditioning. The scope of this research includes the dewatering characteristics and the rheological properties of conditioning sludge with fly ash / polymer.
Physical conditioning with fly ash addition can improve the dewaterability of inorganic sludge, but there is no profound influence on activated sludge. The effect of dual conditioning with fly ash and polymer comparing to chemical conditioning with polymer is investigated. According to the experiment with centrifugation and belt filter press, dual conditioning for inorganic sludge can reduce the dosage of polymer, improve the dewaterability, and produce higher cake solid concentration. However, when comparing dual conditioning to chemical conditioning, there is no significant effect in activated sludge dewatering, and cake solid concentration just increases as adding fly ash. Capillary suction time (CST) and specific resistance to filtration (SRF) are better criteria for optimal dosage of polymer in dewatering process of centrifugation. However, dosage of polymer is usually insufficient in dewatering process of belt filter press when using CST, SRF, and coefficient of compressibility as operational parameters.
In the measurement of the rheological behaviors of sludge, optimal fly ash addition can reduce yield stress, apparent viscosity of inorganic sludge and improve the dewatering characteristic. However, the behavior is not observed in activated sludge conditioning with fly ash addition. As addition of polymer for chemical conditioning or dual conditioning, the relationship between shear rate and shear stress of inorganic sludge varies from straight line to curve with an obvious peak by flocculating the small particles into large and stronger aggregates, but this relationship of activated sludge remains linear. Furthermore, when sludge is treated by chemical or dual conditioning process, the increase of yield stress and apparent viscosity in underdosing is attributed to the floc volume and floc strength, and the increase in overdosing is due to the polymer residual in the water. According to the result, the turning point of different increasing rate could be used as operational criterion for optimal dosage of polymer.

第一章 前言
1.1 研究動機與目的
1.2 研究項目
第二章 文獻回顧
2.1 污泥來源與基本特性
2.1.1 污泥來源
2.1.2 污泥中水份對污泥脫水之影響
2.1.3 污泥粒徑分佈對污泥脫水之影響
2.2.1 調理之機制
2.2.2 陽離子高分子聚合物
2.3 添加飛灰助濾
2.4 流變學於污泥管理上之應用
2.4.1 污泥的流變特性
2.4.2 利用污泥流變特性評估最適加藥量
2.5 污泥脫水特性因子
2.5.1 比阻抗
2.5.2 毛細汲取時間
2.5.3 壓縮係數
2.6 污泥機械脫水
2.6.1 污泥脫水的目的
2.6.2 壓濾脫水機
2.6.3 離心脫水機
2.6.4 帶濾脫水機
第三章 實驗設備與方法
3.1 實驗材料
3.1.1 污泥
3.1.2 陽離子高分子聚合物
3.1.3 飛灰
3.2 實驗流程與內容
3.2.1 實驗流程
3.2.2 實驗內容
3.3 實驗設備與步驟
3.3.1 污泥調理方法
3.3.2 毛細汲取時間試驗
3.3.3 布氏漏斗試驗
3.3.4 污泥流變特性試驗
3.3.5 離心脫水試驗
3.3.6 帶濾脫水試驗
第四章 結果與討論
4.1污泥基本特性分析
4.2以污泥脫水特性因子評估最適加藥量
4.2.1物理調理對脫水因子之影響
4.2.2 添加飛灰助濾之時機
4.2.3 化學調理及雙重調理對脫水因子之影響
4.2.4 以脫水特性因子評估調理之效應
4.3 污泥流變特性
4.3.1 物理調理對流變特性之影響
4.3.2 化學調理及雙重調理對流變特性之影響
4.4 污泥脫水試驗
4.4.1 離心脫水試驗
4.4.2 帶濾脫水試驗
4.4.3 調理對污泥脫水之影響
第五章 結論與建議
5.1 結論
5.2 建議
參考文獻
附錄 實驗數據

Abu-Orf, M. M. and Dentel, S. K. "Effect of Mixing on The Rheological Characteristics of Conditioned Sludge: Full-scale Studies" Wat. Sci. Tech. Vol. 36(11), 51-60 (1997) .
Adrian, D. D., Lutin, P. A. and Nebiker, J. H. "Source Control of Water Treatment Waste Solids" Dept. of Civil Engineering, Univ. of Massachusetts, Amherst., (1968).
Agerback, M. L.and Keiding, K., "On the Origin of Specific Resistance to Filtration", Wat. Sci. Tech. Vol. 28, No. 1, pp. 159-168 (1993).
Andreasen, I. and Nielsen, B., "A Comparative of Full-Scale Sludge Dewatering Equipment", Wat. Sci. Tech. Vol. 28, No. 1, pp. 37-45 (1993).
Baskkerville, R. C. and Gale, R. S., "A Simple Automatic Instrument for Determining the Filterability of Sewage Sludge" Wat. Pollut. Control, Vol. 67(2), 233 (1968).
Benitez, J., Rodriguez, A. and Suarez, A, "Optimization Technique for Sewage Sludge Conditioning with Polymer and Skeleton Builders", Wat. Res. Vol. 28, No. 10, pp. 2067-2073 (1994).
Carman, P. C. "A Study of the Mechanism of Filtration" J. Soc. Chem. Ind., Vol. 52, 280T (1933).
Campbell, H. W. and Crescuolo, P. J. "Assessment of Sludge Conditionability Using Rheological Properties" Proceeding an EEC Workshop on methods of Characteristics of Sewage, Dublin, Ireland (1983).
Campbell, H. W. and Crescuolo, P. J. "Control of Polymer Addition for Sludge Conditioning: a Demonstration Study" Wat. Sci. Tech. Vol. 21(10/11), 1309-1317 (1989).
Chen, G. W., Lin, W. W. and Lee, D. J. "Capillary Suction Time (CST) as a Measure of Sludge Dewaterability " Wat. Sci. Tech. Vol. 34, No 3-4, pp. 443-448 (1996).
Cheremisinoff , P. N., Sludge Management and Disposal , Prentice Hall, Englewood Cliffs, New Jersey, pp. 21-92 (1994).
Christensen, G. L. and Dick, R. I. "Specific Resistance Measurement: Nonparabolic Data." J. Environ. Eng. Div., ASCE, Vol. 111, 243-257 (1985).
Christensen, J. R., Sorensen, P. B., Christensen, G. L. and Hansen, J. "A. Mechanisms for Overdosing in Sludge Conditioning" Jour. of Env. Eng. Vol. 119, 159-171 (1993).
Clarke, W. N. , Hodges, E. and Ooten, R. J., "Cost-Effective Dewatering of Minicipal Treatment Plant Sludges Using Belt Presses", Wat. Sci. Tech. Vol. 22, No. 12, pp. 173-182 (1990).
Coackley, P. C. and Jones, B. R. S. "Vacuum Sludge Filtration" Sewage Ind. Wastes, Vol. 28, 963 (1956).
Colin, F. and Gazbar, s., "Distribution of Water in Sludge in Relation to Their Mechanical Dewatering ", Wat. Res. Vol. 29, No 8, pp. 2000-2005 (1995).
Dembitz, A. E., "Belt Filter Press : A New Solution to Dewatering", Water Waste Eng., Vol. 15, 36 (1978).
Dentel, S. K. and Abu-Orf, M. M. "Laboratory and Full-scale Studies of Liquid Stream Viscosity and Streaming Current for Characterization and Monitoring of Dewaterability" Wat. Res. Vol. 29(12), 2663-2672 (1995).
Dentel, S. K. "Evaluation and Role of Rheological Properties in Sludge Management" Wat. Sci. Tech. Vol. 36(11), 1-8 (1997).
Dick, R. I. and Ewing, B. B. "The Rheology of Actived Sludge" J. WPCF. Vol. 39, 543-560 (1976).
Hashimoto, M. and Hiraoka, M., "Characteristics of Sewage Sludge Affecting Dewatering by Belt Press Filter", Wat. Sci. Tech. Vol. 22, No. 12, pp. 143-152 (1990).
Hiemenz, P. C., Principles of Colloid and Surface Chemistry. 2nd Edition, New York, Marcel Dekker, Inc (1986).
Hwa, T. J. and Jeyaseelan, S., "Conditioning of Oily Sludges with Municipal Solid Wastes Incinerator Fly Ash", Wat. Sci. Tech. Vol. 35, No. 8, pp. 231-238 (1997).
Karr, P. R. and Keinath, T. M. "Influence of Particle Size on Sludge Dewaterability" J. Wat. Pollut. Control Fed., Vol. 50(1), 471 (1978).
Kavanagh, B. V. "The Dewatering of Actived Sludge: Measurement of Specific Resistance to Filtration and Capillary Suction Time" Wat. Pollut. Control, Vol. 79, 388-398 (1980).
Katsiris, N. and Kouzeli-Katsiri, A., "Bound Water Content of Biological Sludge in Relation to Filtration and Dewatering ", Water Res. Vol. 24, pp. 1319-1327 (1987).
LaMer, V. K. and Healy, T. W., "Adsorption-Flocculation Reaction of Macromolecules at the Solid-Liquid Interface", Rev. Pure App. Chem. Vol. 13, 112 (1963).
Langer, S. J., Klute, R. and Hahn, H. H., "Mechanisms of Floc Formation in Sludge Conditioning with Polymer", Wat. Sci. Tech. Vol. 30, No. 8, pp. 129-138 (1994).
Mackie, R. I. and Bai, R., "The Role of Particle Size Distribution in Performance and Modeling of Filtration", Wat. Sci. Tech. Vol. 27, No. 10, pp. 19-34 (1993).
MaGhee, T. J., Water Supply and Sewerage, Water Supply and Sewerage International Edition (1991).
Nelson, R. F. and Brattlof, B. D., "Sludge Pressure Filtration with Fly Ash Addition", J. WPCF. Vol. 51 ,No. 5, pp. 1024-1031 (1979).
Novak, J. T. , Predeville, J. F. and Sherrard, J. H., "Mixing Intensity and Polymer Performance on Sludge Dewatering", J. Envir. Eng. Vol. 114, No. 1-3, pp. 190-198 (1988).
O'Brien, J. H. and Novak, J. T., "Effects of Ph and Mixing on Polymer Condiitioning of Chemical Sludge", J. AWWA. Vol.69 , pp. 600-605 (1977).
Olboter, L. and Vogelophl, A., "Influence of Particle Size Distribution in the Dewatering of Organic Sludge", Wat. Sci. Tech. Vol. 28, No. 1, pp. 149-157 (1993).
Papavasilopoulos, E. N. "Viscosity as Criterion for Optimum Dosing of Polymers in Waterworks Sludges" J. CIWEM. Vol. 11, 217-224 (1997).
Robinson, J. K. and Knocke, W. R., " Use of Dilatometric and Drying Techniques for Assessing Sludge Dewatering Characteristics" Water Envir. Res. Vol. 64(1), pp. 60-68 (1992).
Slatter, P. T. "The Rheological Characterisation of Sludge" Wat. Sci. Tech. Vol. 36(11), 9-18 (1997).
"Sludge Dewaterung" , Manual of Practice No. 20, WPCF (1983).
Sozanski, M. M., Kempa, E. S., Krzysztof Grocholski, and January Bien. "The Rheological Experiment in Sludge Properties Research" Wat. Sci. Tech. Vol. 36(11), 69-78 (1997).
Tenney, M.W. and Cole, T. G., "The Use of Fly Ash in Conditioning Biological Sludges for Vaccum Filtration", J.WPCF. Vol. 40, No.8, pp. 281-302 (1968).
Twbutt, T. H. "A Note on the Units of Specific Resistance to Filtration" Wat Pollut Control, Vol. 69, 694-695 (1970).
Tsang, K. R. and Vesilind, P. A., "Moisture Distribution in Sludge", Wat. Sci. Tech. Vol. 22, No.12, pp. 135-142 (1990)
Unno, H., Muraiso, H. and Akehata, T. "Theoretical and Experimental Study of Factors Affecting Capillary Suction Time (CST)" Water Res. Vol. 17,149 (1983)
Vesilind, P. A., Treatment and Disposal of Wastewater Sludge, Ann Arbor Science Publishers (1979).
Vesilind, P. A., "Capillary Suction Time as a Fundamental Measure of Sludge Dewaterability" J. Water Pollut. Control Feb. Vol. 60, 215-220 (1988)
Vesilind, P. A. and Davis, H. A., "Using the Capillary Suction Time Device for Characterizing Sludge Dewaterability" Wat. Sci. Tech. Vol. 20, No. 1, pp. 203-205 (1988).
Vesilind, P. A. and Martel, C. J., "Freezing of Water and Wastewater Sludge" J. Envir. Eng. Vol. 116, No. 5, pp. 854-862 (1990).
Vesilind, P. A., "The Role of Water in Sludge Dewatering" Wat. Envir. Res. Vol. 66, pp. 4-11 (1994).
Vesilind, P. A. and Hsu, C. C., " Limits of Sludge Dewaterability" Wat. Sci. Tech. Vol. 36, No. 11, pp. 87-91 (1997).
Zall, J. , Galil, N. and Rehbum, M., "Skeleton Builders for Conditioning Oily Sludge" , J.WPCF. Vol. 59, No. 7, pp. 699-706 (1987)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top