跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/04 19:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭如茜
研究生(外文):Ju-Chien Cheng
論文名稱:非結構性蛋白質NS5B和NS3參與C型肝炎病毒複製之分子機轉
論文名稱(外文):Molecular Mechanisms of the nonstructural proteins NS5B and NS3 Involved in teh Replication of Hepatitis C Virus
指導教授:張鑫張鑫引用關係
指導教授(外文):Shin C. Chang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
中文關鍵詞:C 型肝炎病毒非結構性蛋白質複製
外文關鍵詞:hepatitis C virusNS5BNS3replication
相關次數:
  • 被引用被引用:3
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
C 型肝炎病毒 (hepatitis C virus, HCV) 為輸血後非 A 非 B 型肝炎的重要致病原,感染後易轉變成慢性肝炎,並與肝癌形成具有密切的關係,然而有關C型肝炎病毒的致病機轉並不清楚,臨床上也尚未找到有效的治療及預防的方式。本論文希望藉由探討與病毒複製相關的病毒基因著手,嘗試藉由對這些基因生物活性的瞭解,勾勒病毒複製的可能機轉並藉以尋求治療 C 型肝炎病毒感染的對策。
C 型肝炎病毒的基因體為一正向單股線狀的RNA分子,約 9.5 kb ,除5''端及3''端非轉譯區外,只含有一個開放編閱架構,可轉譯出一條約 3000 個胺基酸的多蛋白質先驅分子,經由宿主和病毒自身蛋白梅切割成結構性蛋白質(core, E1, E2, p7)與非結構性蛋白質(NS2, NS3, NS4A, NS4B, NS5A, NS5B)。其中 NS5B 含有與一般核糖核酸病毒複製梅 (replicase)所共有之胺基酸序列 -GlyAspAsp-, NS5A 為一磷酸化蛋白質,NS3 具有解螺旋的酵素活性功能區,推測均與病毒複製有關。為探討 HCV 非結構性蛋白質之生物特性與病毒複製間的相關性,本論文首先以反轉錄聚合連鎖反應 (RT-PCR) 得到 NS5A 與 NS5B 基因 cDNA 片段進行擇殖,並與實驗室先前已擇殖得到的 NS3 表現質體,於原核系統進行表現,再利用純化後的蛋白質在體外進行測試。
在 NS5A 與 NS5B 的研究中,以真核系統進行表現時,由間接免疫螢光染色法的結果顯示兩者皆分佈於受轉染細胞的細胞質中。由於病毒複製應具有與 RNA 結合的能力以進行病毒 RNA 複製,因此本研究採用原核系統表現的 NS5B 及其刪除突變蛋白質,經純化後,以北西方墨點分析法及 EMSA (electrophoresis mobility shift assay) 探討 NS5B 蛋白質與 C 型肝炎病毒基因體 3* 端結合的能力。結果發現 NS5B 與病毒基因體 3'' 端,包含 3'' 非轉譯區中具 genotype 特異性的區域以及病毒蛋白質轉譯區相當於 NS5B 羧基端的區域有結合能力,且其結合能力甚至強於最 3'' 端的 98-nucleotide 的保守序列。由 NS5B刪除突變的研究定出,此結合的序列位於 NS5B 胺基酸 83-194 的 RBD1 與 196-298 的 RBD2 兩個區域,其中 RBD2 包含了所有 RNA 聚合梅共有的 220-DxxxxD-225 A motif 與 282-S/TGxxxTxxxNS/T-292 B motif 保守序列。此 RNA 結合能力與其複製活性的相關性,則有待進一步的探討。至於 NS5A因不具與病毒基因體 3'' 端結合的能力,其參與病毒複製機轉的角色有待進一步的研究。
NS3 蛋白質為 RNA 解螺旋,具有結合 ATP, 水解 ATP, 解開RNA雙股螺旋及結合RNA 等四個保守序列。本研究以聚合連鎖反應將點突變引入 NS3 與解螺旋家族所共同具有的結合 ATP (1230-AX4GKS-1237) 與結合 RNA (1486-QRRGRTGR-1493) 的兩個保守序列中心,探討此二功能區在 HCV NS3 蛋白質的生化特性。結果顯示在 1230-AX4GKS-1237 功能區的突變,不但影響 NS3 蛋白質與 ATP 結合的能力,也會因此影響 NS3 蛋白質水解 ATP,與病毒 RNA 結合以及解開 RNA 雙股螺旋的能力。在 1486-QRRGRTGR-1493 功能區的突變不但影響 NS3 蛋白質與 RNA 結合的能力,也影響了 NS3 蛋白質水解 ATP 及解開 RNA 雙股螺旋的能力,但不影響其與 ATP 結合的能力。
由於 NS3, NS5A 與 NS5B 可能彼此間或與細胞因子共同形成複合體參與病毒的複製,因此本研究也藉由免疫沉殿法分析其間之交互作用,結果發現 NS3, NS5A 及 NS5B 彼此間確實可互相作用,但是否有其他細胞因子參與則需進一步的研究。
Hepatitis C virus (HCV) is the major etiology agent of posttransfusion and sporadic, community acquired non-A, non-B hepatitis. It plays a major role in the development of chronic hepatitis and hepatocellular carcinoma. The viral particle possesses a positive-sense RNA genome that contains a large open reading frame encoding a polyprotein about 3000 amino acid residues. Generation of mature proteins from the polyprotein precursor is mediated by cellular and viral proteases.
Amino acid sequence analysis revealed highly conserved function motifs within the NS5 and NS3 proteins of HCV. To elucidate biological functions of NS5 and NS3 proteins, the cDNA fragments of NS5B, NS5A and NS3 were generated by reverse transcriptase-nested polymerase chain reaction from sera of HCV patients and expressed in both prokaryotic and eukaryotic systems.
HCV NS5B protein possesses the conserved -GDD- motif and the viral RNA-dependent RNA polymerase. It is generally believed that the NS5B protein binds to the 3'' terminus of the viral genome to initiate viral replication. In this study, electrophoretic mobility shift assay was performed to analyze the RNA binding activity of the NS5B protein. The results demonstrated that HCV NS5B protein was capable of interacting with a 3'' viral genomic RNA with or without the 98-nucleotide at sequences extreme 3'' terminus. Both of the 3'' viral RNAs contain 295 nucleotides of the 3''coding region of the HCV polyprotein. The NS5B-RNA complexes were specifically competed away by the unlabeled homologous RNA, but not by the viral 5'' noncoding region and very poorly by the 3*''conserved 98-nucleotide tail. A 3'' coding region with conserved stem-loop structures rather than the 3'' noncoding region of the HCV genome is critical for the specific binding of NS5B. In addition, the binding activity was not observed with the HCV NS5A protein. Furthermore, two independent RNA-binding domains (RBDs) of NS5B were identified, RBD1 from amino acid residues 83 to 194 and RBD2 from 196 to 298. Interestingly, the conserved motifs of RNA dependent RNA polymerase for putative RNA-binding (220-DxxxxD-225) and template/primer position (282-S/TGxxxTxxxNS/T-292) are present in the RBD2.
HCV NS3 protein possesses NTPase and helicase activities. Although the enzymatic activities have been extensively studied, the ATP- and RNA-binding domains of the NS3 helicase were not well-characterized. In this study, NS3 proteins with point mutations were analyzed for their activities on ATP binding, RNA binding, ATP hydrolysis, and RNA unwinding. UV crosslinking experiments demonstrated that the lysine residue in the 1230-AX4GKS-1237 motif was directly involved in ATP binding, whereas an NS3 mutant in which the arginine-rich motif (1486-QRRGRTGR-1493) was changed to QRRDTTGR bound ATP as well as the wild type. The binding activity of HCV NS3 helicase to the viral RNA was drastically reduced with the mutations in the arginine-rich motif and was also affected by a substitution of the lysine residue in the AX4GKS motif. Previously, Arg-1490 in the arginine-rich motif of the HCV NS3 was suggested, based on the crystal structure of an NS3-deoxyuridine octamer complex, to directly interact with the g-phosphate group of ATP. Nevertheless, our functional analysis demonstrated the critical roles of Arg-1490 in binding to the viral RNA, ATP hydrolysis, and RNA unwinding, but not in ATP binding.
To further elucidate possible interactions among the nonstructural proteins of HCV to form a replicative complex, co-immunoprecipitation assay was performed. The results indicated that the HCV NS3, NS5A and NS5B proteins interacted with each other, either directly or indirectly. Although the roles of cellular factors involved in the complex formation and HCV replication remained to be analyzed, the present studies have provided the information on the molecular mechanisms of the nonstructural proteins involved in the replication of HCV.
封面
目錄
中文摘要
英文摘要
縮寫/代號
藥品來源
圖表目錄(List of Tables and Figrues)
質體構築流程圖目錄(List of Plasmid Constructions)
第一章 導論
1.1.C型肝炎病毒(HCV)的發現
1.2.疾病與可能的致病機轉
1.3.病毒的結構與分類
1.4.病毒的基因體構造與病毒蛋白質的功能
1.5.病毒的複製及與宿主細胞的關係
1.6.本論文的主旨及目的
第二章 C型肝炎病毒非結構性蛋白質NS5A與NS5B的表現與功能分析
2.1.本章概要
2.2.材料與方法
2.2.1.HCVNS5A與NS5B的製備
2.2.2.實驗室提供的質體
2.2.3.質體的構築
2.2.3.1.NS5AcNDA的選殖
2.2.3.2.NS5BcDNA的選殖
2.2.3.3.NS5A與NS5B刪除突變質體的構築
2.2.3.4.HCV3''端基因體cDNA質體的構築
2.2.4.質體DNA的製備序列分析
2.2.4.1.勝任細胞的製備
2.2.4.2.細菌轉形
2.2.4.3.小量質體的製備
2.2.4.4.大量質體的製備
2.2.4.5.DNA定序法
2.2.5.NS5A與NS5B蛋白質在原核系統的表現
2.2.5.1.TrpE融合蛋白質的表現
2.2.5.2.His-tagged 融合蛋白質的表現
2.2.5.3.NS5A與NS5B蛋白質的純化
2.2.6.蛋白質表現的相關分析系統
2.2.6.1.正十二烷硫酸鈉-聚丙烯醯胺凝膠電泳
2.2.6.2.活體外轉錄反應
2.2.6.3.活體外轉譯反應
2.2.6.4.抗體的製備
2.2.6.5.免疫沈澱法
2.2.6.6.西方墨點分析法
2.2.7.NS5A與NS5B蛋白質在真核系統的表現
2.2.7.1.細胞株及DNA轉染試驗
2.2.8.HCV NS5B蛋白質功能的分析
2.2.8.1.RNA受質的製備
2.2.8.3.HCV NS5B RNA複製?功能的分析
2.2.8.3.1.HCV NS5B RdRp 活性分析-細胞試驗
2.2.8.3.2.HCV NS5B RdRp 活性分析-體外試驗
2.2.8.4.HCV NS5B與 RNA結合能力的分析
2.2.8.4.1.北西方墨點分析(Northwestern blot analysis)
2.2.8.4.2.Electrophoretic mobility shift assay(EMSA)
2.3.結果
2.3.1.NS5A與NS5B蛋白質在原核系統的表現
2.3.2.NS5A與NS5B蛋白質在真核系統的表現
2.3.3.NS5A與NS5B蛋白質分佈於受轉染細胞的細胞質中
2.3.4.HCV NS5B具有RNA聚合?的活性
2.3.5.NS5B蛋白質專一性結合於HCV3''端基因體
2.3.6.HCV3'' CNU RNA與NS5B蛋白質結合需要保留屬於NS5B羧基諯轉譯區的基因序列
2.3.7.NS5B蛋白質具有兩處與RNA結合的區域
2.4.討論
2.4.1.NS5A與NS5B蛋白質的表現
2.4.2.NS5B RNA聚合?功能的分析
2.4.3.HCV3''端基因體與NS5B的專一性結合區
2.4.4.NS5B 蛋白質具有兩處與RNA結合的區域
2.4.5.藉由對NS5B生化特性的瞭解推測HCV可能的複製機轉
2.5.本章總結
第三章 C型肝炎病毒非結構性蛋白質NS3的表現與功能分析
3.1.本章概要
3.2.材料與方法
3.2.1.實驗室提供的質體
3.2.2.HCV NS3及其變異株蛋白質的表現與純化
3.2.2.1.NS3蛋白質的表現與純化
3.2.2.2.HCV NS3抗體的製備
3.2.2.3.西方墨點法分析
3.2.3.
3.2.3.1.ATP水解?活性的測試
3.2.3.2.蛋白質解螺旋?活性的測試
3.2.3.3.蛋白質ATP結合能力的測試
3.2.3.4.蛋白質RNA結合能力的測試
3.2.3.4.1.Filter binding結合分析
3.2.3.4.2.北西方墨點分析(Northwestern blotting)
3.3.結果
3.3.1.HCV NS3蛋白質的表現與純化
3.3.2.突變株蛋白質對ATP水解?及解螺旋?活性的影響
3.3.3.突變株蛋白質與ATP結合能力的分析
3.3.4.突變株蛋白質與RNA結合能力的分析
3.4.討論
3.4.1.1230-AX4GKS-1237-保守序列中Lys-1236對於NS3蛋白質解螺旋?的重要性
3.4.2.1486-QRRGRTGR-1493-保守列中Arg-1490對於NS3蛋白質解螺旋?的重要性
3.4.3.NS5各保守序列胺基酸間的交互作用在NS3蛋白質活性上所扮演的角色
3.5.本章總結
第三章 C型肝炎病毒非結構性蛋白質間及其與細胞蛋白間交互作用的探討
4.1.本章概述
4.2.材料與方法
4.2.1.質體
4.2.2.活體外蛋白質轉譯
4.2.3.免疫沈澱法
4.2.4.西方墨點分析
4.3.結果與討論
4.4.本章總結
第五章 結論與未來展望
圖表
質體構築流程圖
參考文獻
發表的相關論文
1.Al, R. H., Y. Xie, Y. Wang, and C. H. Hagedorn. 1998. Expression of recombinant hepatitis C virus non-structural protein 5B in Escherichia coli. Virus Res. 53:141-149.
2.Ali, N., and A. Siddiqui. 1997. The La antigen binds 5* noncoding region of the hepatitis C virus RNA in the context of the initiator AUG codon and stimulates internal ribosome entry site-mediated translation. Proc. Natl. Acad. Sci. USA 94:2249-2254.
3. Alter, H. J., R. H. Purcell, P. V. Holland, S. M. Feinstone, A. G. Morrow, and Y. Moritsugu. 1975. Clinical and serological analysis of transfusion-associated hepatitis. Lancet 2:838-841.
4. Alter H. J., R. H. Purcell, J. W. Shih, J. C. Melpolder, M. Houghton, Q.-L. Choo, and G. Kuo. 1989. Detection of antibody to hepatitis C virus in prospectively followed transfusion recipients with acute and chronic non-A, non-B hepatitis. N. Engl. J. Med. 321:1494-1500.
5. Asabe, S. I., Y. Tanji, S. Satoh, T. Kaneko, K. Kimura, and K. Shimotohno. 1997. The N-terminal region of hepatitis C virus-encoded NS5A is important for NS4A-dependent phosphorylation. J. Virol. 71:790-796.
6. Bartenschlager, R., L. Ahlborn-Laake, J. Mous, and H. Jacobsen. 1993. Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions. J. Virol. 67:3835-3844.
7. Bassett, S. E., D. L. Thomas, K. M. Brasky, and R. E. Lanford. 1999. Viral persistence, antibody to E1 and E2, and hypervariable region 1 sequence stability in hepatitis C virus-inoculated chimpanzees. J. Virol. 73:1118-1126.
8. Behrens, S.-E., L. Tomei, and R. De Francesco. 1996. Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO 15:12-22.
9. Blight, K., R. Trowbridge, R. Rouland, and E. Growan. 1992. Detection of hepatitis C virus RNA by in situ hybridization. Liver. 12:286-289.
10. Blight, K. J., and C. M. Rice. 1997. Secondary structure determination of the conserved 98-base sequence at the 3'' terminus of hepatitis C virus genome RNA. J. Virol. 71:7345-7352.
11. Blumberg, B. S., H. J. Alter, and S. Visnich. 1965. "A new" antigen in leukemia sera. JAMA 191:541-546.
12. Blumenthal, T., and G. C. Carmichael. 1979. RNA replication: function and structure of Qbeta-replicase. Annu. Rev. Biochem. 48:525-548.
13. Borowski, P., K. Oehlmann, M. Heiland, and R. Laufs. 1997. Nonstructural protein 3 of hepatitis C virus blocks the distribution of the free catalytic subunit of cyclic AMP-dependent protein kinase. J. Virol. 71:2838-2843.
14. Borowski, P., J. S. zur Wiesch, K. Resch, H. Feucht, R. Laufs, and H. Schmitz. 1999. Protein kinase C recognizes the protein kinase A-binding motif of nonstructural protein 3 of hepatitis C virus. J. Biol. Chem. 274:30722-30728.
15. Chambers, T. J., C. S. Hahn, R. Galler, and C. M. Rice. 1990. Flavivirus genome organization, expression, and replication. Annu. Rev. of Micro. 44:649-688.
16. Chang, M.-F., S. C. Baker, L. H. Soe, T. Kamahora, J. G. Keck, S. Makino, S. Govindarajan, and M. M. C. Lai. 1988. Human hepatitis delta antigen is a nuclear phosphoprotein with RNA-binding activity. 62:2403-2410.
17. Chang, M.-F., C.-Y. Sun, C.-J. Chen, and S. C. Chang. 1993. Functional motifs of delta antigen essential for RNA binding and replication of hepatitis delta virus. J. Virol. 67:2529-2536.
18. Chang, S. C., J.-H. Yen, H.-Y. Kang, M.-H. Jang, and M.- F. Chang. 1994. Nuclear localization signals in the core protein of hepatitis C virus. Biochem. Biophys. Res. Commun. 205:284-1290.
19. Chang, M.-H., C. J. Chen, M.-S. Lai, H.-M. Hsu, T.-C. Wu, M.-S. Kong, D.-C. Liang, W.-Y. Shau, and D.-S. Chen. 1997. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. N. Engl. J. Med. 336:1855-1859.
20. Chen. C. J., M. D. Kuo, L. J. Chien, S. L. Hsu, Y. M. Wang, and J. H. Lin. 1997. RNA-protein interactions: involvement of NS3, NS5, and 3'' noncoding regions of Japanese encephalitis virus genomic RNA. J. Virol. 71:3466-3473.
21. Chen, D. S., G, Kuo, J. L. Sung, M. Y. Lai, J. C. Sheu, P. J. Chen, H. M. Hsu, M. H. Chang, C. J. Chen, L. C. Hahn, Q. L. Choo, T. H. Wang, and M. Houghton. 1990. Hepatitis C virus infection in an area hyperendemic for hepatitis B and chronic liver disease: the Taiwan experience. J. Infect. Dis. 162:817-822.
22. Chen, P.-J., M. Lin, K.-F. Tai, P.-C. Liu, C.-J. Lin, and D.-S. Chen. 1992. The Taiwanese hepatitis C virus genome: sequence determination and mapping the 5'' terminus of viral genomic and antigenomic RNA. Virology 88:102-113.
23. Cheng, J.-C., M.-F. Chang, and S. C. Chang. 1999. Specific interaction between the hepatitis C virus NS5B RNA polymerase and the 3* end of the viral RNA. J. Virol. 73:7044-7049.
24. Cho, H.-S., N.-C. Ha, L.-W. Kang, K. M. Chung, S. H. Back, S. K. Jang, and B.-H. Oh. 1998. Crystal structure of RNA helicase from genotype 1b hepatitis C virus: a feasible mechanism of unwinding duplex RNA. J. Biol. Chem. 273:15045-15052.
25. Choo, Q.-L., G. Kuo, A. J. Weiner, L. R. Overby, D. W. Bradley, and M. Houghton. 1989. Isolation of a cDNA clone derived from blood-borne non-A, non-B viral hepatitis genome. Science 244:359-362.
26. Choo, Q.-L., K. H. Richman, J. H. Han, K. Berger, C. Lee, C. Dong, C. Gallegos, D. Coit, A. Medina-Selby, P. J. Barr, A. J. Weiner, D. W. Bradley, G. Kuo, and M. Houghton. 1991. Genetic organization and diversity of the hepatitis C virus. Proc. Natl. Acad. Sci. USA 88:2451-2455.
27. Chung, R. T., A. Monto, J. L. Dienstag, L. M. Kaplan. 1999. Mutations in the NS5A region do not predict interferon-responsiveness in American patients infected with genotype 1b hepatitis C virus. J. Med. Virol. 58:353-358.
28. Chung, R. T., and L. M. Kaplan. 1999. Heterogeneous nuclear ribonucleoprotien I (hnRNP-I/PTB) selectively binds the conserved 3* terminus of hepatitis C viral RNA. Biochem. Biophys. Res. Commun. 254:351-362.
29. Collett, M. S., R. Larson, S. K. Belzer, and E. Retzel.1988. Proteins encoded by bovine viral diarrhea virus: the genomic organization of a pestivirus. Virology. 165: 200- 208.
30. Cui, T., and A. G. Porter. 1995. Localization of binding site for encephalomyocarditis virus RNA polymerase in the 3''-noncoding region of the viral RNA. Nucleic Acids Res. 23:377-382.
31. Cui, T., S. Sankar, and A. G. Porter. 1993. Binding of encephalomyocarditis virus RNA polymerase to the 3''-noncoding region of the viral RNA is specific and requires the 3''-poly(A) tail. J. Biol. Chem. 268:26093-26098.
32. Dane D.S. C.H. Cameron, M. Briggs. 1970. Virus like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet 1:695-698.
33. De Francesco, R., S.-E. Behrens, L. Tomei, S. Altamura, and J. Jiricny. 1996. RNA-dependent RNA polymerase of hepatitis C virus. Methods Enzymol. 275:58-67.
34. Deiman, B. A. L. M., A. K. Koenen, P. W. G. Verlaan, and C. W. A. Pleij. 1998. Minimal template requirements for initiation of minus-strand synthesis in vitro by the RNA-dependent RNA polymerase of turnip yellow mosaic virus. J. Virol. 72:3965-3972.
35. Di Bisceglie, A. M. 1995. Hepatitis C and hepatocellular carcinoma. Semin. Liver Dis. 15:64-69.
36. Enomoto, N., I. Sakuma, Y. Asahina, M. Kurosaki, T. Murakami, C. Yamamoto, N. Izumi, F. Marumo, and C. Sato. 1995. Comparison of full-length sequences of interferon-sensitive and resistant hepatitis C virus 1b. Sensitivity to interferon is conferred by amino acid substitutions in the NS5A region. J. Clin. Invest. 96:224-230.
37. Enomoto, N., I. Sakuma, Y. Asahina, M. Kurosaki, T. Murakami, C. Yamamoto, Y. Ogura, N. Izumi, F. Marumo, and C. Sato. 1996. Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection. N. Engl. J. Med. 334:77-81.
38. Errington, W., A. D. Wardell, S. McDonald, R. D. Goldin, and M. J. McGarvey. 1999. Subcellular location of NS3 in HCV-infected hepatocytes. J. Med.Virol. 59:456-462.
39. Failla, C., L. Tomei, and R. De Francesco. 1994. Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. J. Virol. 68:3753-3760.
40. Fan, Z., Q. R. Yang, J. S. Twu, A. H. Sherker. 1999. Specific in vitro association between the hepatitis C viral genome and core protein. J. Med. Virol. 59:131-134.
41. Farci, P., H. J. Alter, S. Govinndarajan, D. C. Wong, R. R. Lesniewski, I. K. Mushahwar, S. M. Desai, R. H. Millwe, N. Orgata, and R. H. Purcell. 1992. Lack of protective immunity against reinfection with hepatitis C virus. Science. 258: 135-140
42. Feinstone, S. M., A. Z. Kapikian, and R. H. Purcell. 1973. Hepatitis A detection by immune electron microscopy of a virus-like antigen associated with acute illness. Science 182:1026-1028.
43. Ferrari, E., W.-M. Jacquelyn, J. W. S. Fang, B. M. Baroudy, J. Y. N. Lau, and Z. Hong. 1999. Characterization of soluble hepatitis C virus RNA-dependent RNA polymerase expressed in Escherichia coli. J. Virol. 73:1649-1654.
44. Flint, M., C. Maidens, L. D. Loomis-Price, C. Shotton, J. Dubuisson, P. Monk, A. Higginbottom, L. Shoshana, and J. A. Mackeating. 1999. Characterization of hepatitis C virus E2 glycoprotein interaction with a putative cellular receptor, CD81. J. Virol. 73:6235-6244.
45. Fournillier, A., E. Depla, P. Karayiannis, O. Vidalin, G. Maertens, C. Trepo, G. Inchauspe. 1999. Expression of noncovalent hepatitis C virus envelope E1-E2 complexes is not required for the induction of antibodies with neutralization properties following DNA immunization. J. Virol. 73:7497-7504.
46. Francki, R. I. B., C. M. Fauquet, D. L. Knudson, and F. Brown. 1991. Classification and nomenclature of virus. Fifth report of the international committee on taxonomy of viruses. Arch. Virol. 2:223-233.
47. Fukushi, S., C. Kurihara, N. Ishiyama, F. B. Hoshino, A. Oya, and K. Katayama. 1997. The sequence element of the internal ribosome entry site and a 25-kilodalton cellular protein contribute to efficient internal initiation of translation of hepatitis C virus RNA. J. Virol. 71:1662-1666.
48. Gale, M. Jr, C. M. Blakely, B. Kwieciszewski, S. L. Tan, M. Dossett, N. M. Tang, M. J. Korth, S. J. Polyak, D. R. Gretch, and M. G. Katze. 1998. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol. Cell Biol. 18:5208-5218
49. Gale, M. Jr, B. Kwieciszewski, M. Dossett, H. Nakao, and M. G. Katze. 1999. Antiapoptotic and oncogenic potentials of hepatitis C virus are linked to interferon resistance by viral repression of the PKR protein kinase. J. Virol. 73:6503-6516.
50. Gallinari, P., D. Brennan, C. Nardi, M. Brunetti, L. Tomei, C. Steinkuhler, and R. De Francesco. 1998. Multiple enzymatic activities associated with recombinant NS3 protein of hepatitis C virus. J. Virol. 72:6758-6769.
51. Gallinari, P., C. Paolini, D. Brennan, C. Nardi, C. Steinkuhler, R. De Francesco. 1999. Modulation of hepatitis C virus NS3 protease and helicase activities through the interaction with NS4A. Biochemistry. 38:5620-5632.
52. Ghosh, A. K., R. Steele, K. Meyer, R. Ray, and R. B. Ray. 1999. Hepatitis C virus NS5A protein modulates cell cycle regulatory genes and promotes cell growth. J. Gen. Virol. 80:1179-1183.
53. Gontarek, R. R., L. L. Gutshall, K. M. Herold, J. Tsai, G. M. Sathe, J. Mao, C. Prescott, and A. M. Del Vecchio. 1999. hnRNP C and polypyrimidine tract-binding protein specifically interact with the pyrimidine-rich region within the 3*NTR of the HCV RNA genome. Nucleic Acids Res. 15:1457-1463.
54. Gorbalenya, A. E., and E. V. Koonin. 1993. Helicases: amino acid sequence comparisons and structure-function relationships. Curr. Opin. Struct. Biol. 3:419-429.
55. Gorbalenya, A. E., E. V. Koonin, A. P. Donchenko, and V. M. Blinov. 1989. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 17:4713-4730.
56. Grakoui, A., D. W. McCourt, C. Mychowski, S. M. Feinstone, and C. M. Rice. 1993a. Characterization of hepatitis C virus-encoded serine proteinase: determination of proteinase-dependent polyprotein cleavage sites. J. Virol. 67:2832-2843.
57. Grakoui, A., C. Wychowski, C. Lin, S. M. Feinstone, and C. M. Rice. 1993b. Expression and identification of hepatitis C virus polyprotein cleavage products. J. Virol. 67:1385-1395.
58. Grakoui, A., D. W. McCourt, C. Wychowski, S. M. Feinstone, and C. M. Rice. 1993c. A second hepatitis C virus-encoded proteinase. Proc. Natl. Acad. Sci. USA 90:10583-10587.
59. Han, J. H., and M. Houghton. 1992. Group specific sequences and conserved secondary structures at the 3'' end of HCV genome and its implication for viral replication. Nucleic Acids Res. 20:3520.
60. Han, J. H., V. Shyamala, K. H. Richman. M. J. Brauer, B. Irvine, M. S. Urdea, P. Tekamp-Olson, G. Kuo, Q.-L. Choo, and M. Houghton. 1991. Characterization of the terminal regions of hepatitis C viral RNA: identification of conserved sequences in the 5* untranslated region and poly(A) tails at the 3* end. Proc. Natl. Acad. Sci. USA 88:1711-1715.
61. Heilek, G. M., and M. G. Peterson. 1997. A point mutation abolishes the helicase but not the nucleoside triphosphatase activity of hepatitis C virus NS3 protein. J. Virol. 71:6264-6266.
62. Hijikata M., N. Kato, Y. Ootsuyama, M. Nakagawa, and K. Shimotohno. 1991. Gene mapping of the putative structural region of the hepatitis C virus genome by in vitro processing analysis. Proc. Natl. Acad. Sci. USA 88:5547-5551.
63. Hijikata, M., H. Mizushima, Y. Tanji, Y. Komoda, Y. Hirowatari, T. Akagi, N. Kato, K. Kimuran, and K. Shimotohno. 1993a. Proteolytic processing and membrane association of putative nonstructural proteins of hepatitis C virus. Proc. Natl. Acad. Sci. USA 90:10773-10777.
64. Hijikata, M., H. Mizushima, T. Akagi, S. Mori, N. Kakiuchi, N. Kato, T. Tanaka, K. Kimura, and K. Shimotohno. 1993b. Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus. J. Virol. 67:4665-4675.
65. Hirota, M., S. Satoh, S. Asabe, M. Kohara, K. Tsukiyama-Kohara, N. Kato, M. Hijikata, K. Shimotohno. 1999. Phosphorylation of nonstructural 5A protein of hepatitis C virus: HCV group-specific hyperphosphorylation. Virology 257:130-137.
66. Honda, M., E. A. Brown, S. M. Lemon. 1996a. Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA 2:955-968.
67. Honda, M., L.-H. Ping, R. C. Rijnbrand, E. Amphlett, B. Clarke, D. Rowlands, and S. M. Lemon. 1996b. Structural requirements for initiation of translation by internal ribosome entry within genome-length hepatitis C virus RNA. Virology 222:31-42.
68. Honda, M., M. R. Beard, L. H. Ping, and S. M. Lemon. 1999.A phylogenetically conserved stem-loop structure at the 5* border of the internal ribosome entry site of hepatitis C virus is required for cap-independent viral translation. J. Virol. 73:1165-1174.
69. Horiike, N., K. Michitaka, T. Masumoto,I. Okura, S. M. Akbar, and M. Onji. 1999. Relationnship between the effect of interferon therapy and the change of hepatitis C virus non-strucural 5B gene. J. Gastroenterol. Hepatol. 14:345-351.
70. Houghton, M. A. J. Weiner, J. H. Han, G. Kou, and Q.-L. Choo.1991. Molecular biology of the hepatitis C virus: implication for diagnosis, development and control of viral disease. Hepatology 14:381-388.
71. Howe, A. Y., R. Chase, S. S. Taremi, C. Risano, B. Beyer, B. Malcolm, and T. Y. Lau. 1999. A novel recombinant single-chain hepatitis C virus NS3-NS4A protein with improved helicase activity. Protein Sci. 8:1332-1341.
72. Hwang, L. H., C. L. Hsieh, A. Yen, Y. L. Chung, and D. S. Chen. 1998. Involvenment of the 5* proximal coding sequences of hepatitis C virus with internal initiation of viral translation. Biochem. Biophy. Res. Commun. 252:455-460.
73. Hwang, S. B., K.-J. Park, Y.-S. Kim, Y. C. Sung, and M. M. C. Lai. 1997. Hepatitis C virus NS5B protein is a membrane-associated phosphoprotein with a predominantly perinuclear localization. Virology 227:439-446.
74. Ide, Y, L. Zhang, M. Chen, G. Inchauspe, C. Bahl, Y. Sasaguri, and R. Padmanabhan. 1996. Characterization of the nuclear localization signal and subcellular distribution of hepatitis C virus nonstructural protein NS5A. Gene 182:203-211.
75. Ishido, S., Fujita T., and Hotta. H. 1998. Complex formation of NS5B with NS3 and NS4A proteins of hepatitis C virus. Biochem. Biophys. Res. Commun. 244:35-40.
76. Ishii, K., Y., Tanaka, C. C. Yap, H. Aizaki, Y. Matsuura, and T. Miyamura. 1999. Expression of hepatitis C virus NS5B protein:characterization of its RNA polymerase activity and RNA binding. Hepatology. 29:1227-1235.
77. Ito, T., and M. M. C. Lai. 1997. Determination of the secondary structure of and cellular protein binding to the 3''-untranslated region of the hepatitis C virus RNA genome. J. Virol. 71:8698-8706.
78. Jacobson, S. J., D. A. M. Konings, and P. Sarnow. 1993. Biochemical and genetic evidence for a pseudoknot structure at the 3* terminus of the poliovirus RNA genome and its role in viral RNA amplification. J. Virol. 67:2961-2971.
79. Kaito, M., S. Watanabe, K. Tsukiyama-Kohara, K. Yamaguchi, Y. Kobayashi, M. Konishi, M. Yokoi, S. Ishida, S. Suzuki, and M. Kohara. 1994. Hepatitis C virus particle detected by immunoelectron microscopic study. J. Gen. Vipol.75:1755-1760.
80. Kamer, G., and P. Argos. 1984. Primary structural comparison of RNA-dependent polymerase from plant, animal and bacterial viruses. Nucleic Acids Res. 12:7269-7282.
81. Kaneko, T., Y. Tanji, S. Satoh, M. Hijikata, S. Asabe, K. Kimura, and K. Shimotohno. 1994. Production of two phosphoproteins from the NS5A region of the hepatitis C viral genome. Biochem. Biophys. Res. Commun. 205:320-326.
82. Kao, J. H., P. J. Chen, M. Y. Lai, P. M. Yang, J. C. Sheu, T. H. Wang, and D. S. Chen. 1994a. Mixed infection of hepatitis C virus a s a factor in acute exacerbation of chronic type C hepatitis. J. Infect. Dis. 170:1128-1133.
83. Kao, J. H., S. L.Tsai, P. M. Yang, J. C. Sheu, M. Y. Lai, H. C. Hsu, J. L. Sung, T. H. Wang, and D. S. Chen. 1994b. A clinic-pathologic study of chronic non-A, non-B (type C) hepatitis C in Taiwan: comparison between posttransfusion and sporadic patients. J. Hepatol. 21:244-249.
84. Kao, J. H., P. J, Chen, M. Y. Lai, P. M. Yang, J.C. Sheu, T. H. Wang, and D. S. Chen. 1995b. Genotypes of hepatitis C virus in Taiwan and the progression of liver disease. J. Clinical Gastroenterology 21:231-237.
85. Kao, J. H., P. M. Yang, M. Y. Lai, P. J. Chen, T. H. Wang, and D. S. Chen. 1995c. Evaluation of third-generation hepatitis C antibody assay in chronic hepatitis C and chronic non-B, non-C hepatitis. Viral. Immunol. 8:135-139.
86. Kao, J. H., P. J. Chen, M. Y. Lai, P. M. Yang, T. H. Wang, and D. S. Chen. 1996a. Superinfection of homotypic virus in hepatitis C virus carriers: studies on
patient with posttransfusion hepatitis. J. Med. Virol. 50:303-308.
87. Kao, J. H., M. Y. Lai, P. J. Chen, L. H. Hwang, and D. S. Chen. 1996b. Serum hepatitis C virus titers in the progression of type C chronic liver disease: with special emphasis on patients with type 1b infection. J. Clin. Gastroenterol. 23:280-283.
88. Kapoor M., Zhang L., Raamachandea M., Kusukawa J., Ebner K. E., and Padmanabhan R. (1995) Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5. J. Biol. Chem. 11:19100-19106.
89. Kato N., M. Hijikata, Y. Ootsuyama, M. Nakagawa, S. Ohkohi, T. Sugimura, and K. Shimotohno. 1990. Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc. Natl. Acad. Sci. USA 87:9524-9528.
90. Kato, N., K. H. Lan, S. K. Ono-Nita, Y. Shiratori, and M. Omata. 1997. Hepatitis C virus nonstructural region 5A protein is a potent transcriptional activator. J. Virol. 71:8856-8859.
91. Kim, D. W., Y. Gwack, J. H. Han, and J. Choe. 1995. C-terminal domain of the hepatitis C virus NS3 protein contains an RNA helicase activity. Biochem. Biophys. Res. Commun. 215:160-166.
92. Kim, D. W., J. Kim, Y. Gwack, J. H. Han, and J. Choe. 1997. Mutational analysis of the hepatitis C virus RNA helicase. J. Virol. 71:9400-9409.
93. Kim, J. L., K. A. Morgenstern, J. P. Griffith, M. D. Dwyer, J. A. Thomson, M. A. Murcko, C. Lin, and P. R. Caron. 1998. Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure 6:89-100.
94. Koch, J. O., and R. Bartenschlager. 1999. Modulation of hepatitis C virus NS5A hyperphosphorylation by nonstructural protein NS3, NS4A, and NS4B. J. Virol. 73:7138-7146.
95. Kolykhalov, A. A., S. M. Feinstone, and C. M. Rice. 1996. Identification of a highly conserved sequence element at the 3'' terminus of hepatitis C virus genome RNA. J. Virol. 70:3363-3371.
96. Kuo, G., Q.-L. Choo, H. J. Alter, G. L. Gitnick, A. G. Redeker, R. H. Purcell, T. Miyamura, J. L. Dienstag, M. J. Alter, C. E. Stevens, G. E. Tegtmeier, F. Bonino, M. Colombo, W.-S. Lee, C. Kuo, K. Berger, J. R. Shuster, L. R. Overby, D. W. Bradley, and M. Houghton. 1989. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 244:362-364.
97. Lai, M.-Y., J. H. Kao, P. M. Yang, J. T. Wang, P. J. Chen, K. W. Chan, J. S. Chu, and D. S. Chen.1996. Long-term efficacy of Ribavirin plus interferon alfa in the treatment of chronic hepatitis C. Gastroenterology.111:1-6.
98. Large, M. K., D. J. Kittlesen, and Y. S. Hahn. 1999. Suppression of host immune response by the core protein of hepatitis C virus: positive implication for hepatitis C virus persistence. J. immunol. 162:931-938.
99. Lesburg, C. A., M. B. Cable, E. Ferrari, Z. Hong, A. F. Mannarino, and P. C. Weber. 1999. Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat. Struct. Biol. 6:937-943.
100. Levin, M. K. and S. S. Patel. 1999. The helicase from hepatitis C virus is active as an oligomer. J. Biol. Chem. 274:31839-31846.
101. Lin, C., B. D. Lindenbach, B. M. Pragai, D. W. McCourt, and C. M. Rice. 1994. Processing in the hepatitis C virus E2-NS2 region: identification of p7 and two distinct E2-specific products with different C termini. J. Virol. 68:5063-5073.
102. Lin, C., J.A. Thomson, and C.M. Rice. 1995. A central region in the hepatitis C virus NS4a protein allows formation of an active NS3-NS4a serine proteinase complex in vivo and in vitro. J. Virol. 69:4373-4380.
103. Lin, C., and J. L. Kim. 1999. Structure-based mutagenesis study of hepatitis C virus NS3 helicase. J. Virol. 73:8798-8807.
104. Lin, Y.-J., C.-L. Liao, and M. M. C. Lai. 1994. Identification of the cis-acting signal for minus strand RNA synthesis of a murine coronavirus: implication for the role of minus-strand RNA in RNA replication and transcription. 68:8131-8140.
105. Linnen, J., J. Wages, Jr., Z. Y. Zhang-Keck, et al. 1996. Molecular cloning and disease association of hepatitis G virus: a transfusion-transmissible agent. Science 271:505-508.
106. Liou T.C. T. T. Chang, K. C. Young, X. Z. Lin, C. Y. Lin., and H. L. Wu. 1992. Detection of HCV RNA in Urine, Seminal fluid and ascites. J.Med. Virol. 37:197-202.
107. Liu, Q., R. A. Bhat, A. M. Prince, and P. Zhang. 1999. The hepatitis C virus NS2 protein generated by NS2-3 autocleavage is required for NS5A phosphorylation. Biochem. Biophys. Res. Commun. 254:572-577.
108. Lo, S.-Y., M. Sely, and J.-H. Ou 1996. Interaction between hepatitis C virus core protein and E1 envelope protein. J. Virol. 70:5177-5182.
109. Lohmann, V., F. Korner, U. Herian, and R. Bartenschlager. 1997. Biochemical properties of hepatitis C virus NS5B RNA-dependent RNA polymerase and identification of amino acid sequence motifs essential for enzymatic activity. J. Virol. 71:8416-8428.
110. Lohmann, V., A. Roos, F. Korner, JO Koch, and R. Bartenschlager. 1998. Biochemical and kinetic analyses of NS5B RNA-dependent RNA polymerase of the hepatitis C virus. Virology 249:108-118.
111. Lohmann, V., H. Overton, and R. Bartenschlager. 1999. Selective stimulation of hepatitis C virus and pestivirus NS5B RNA polymerase activity by GTP. J. Biol Chem. 274:10807-10815.
112. Lohmann, V., F. Korner, J. Koch, U. Herian, L. Theilmann, and R. Bartenschlager. Replication of subgenomic hepatitis C virus RNAs in a Hepatoma cell line. Science. 285:110-113.
113. Lu W. S.Y.. Lo, M. Chen, K. J. Wu, Y. K. Fung, and J.H. Ou. 1999. Activation of p53 tumor suppressor by hepatitis C virus core protein. Virology. 264:134-141.
114. Matsumoto, M., T. Y. Hsieh, N. Zhu, T. VanArsdale, S. B. Hwang, K. S. Jeng, A. E. Gorbalenya, S. Y. Lo, J. H. Ou, C. F. Ware, and M. M. C. Lai. 1997. Hepatitis C virus core protein interact with the cytoplasmic tail of lymphotoxin receptor. J. Virol. 71:1301-1309.
115. Meunier, J. C., A. Fournillier, A. Choukhi, A. Cahour, L. Cocquerel, J. Dubuisson, and C. Wychowski. 1999. Analysis of the glycosylation sites of hepatitis C virus (HCV) glycoprotein E1 and the influence of glycans on the formation of the HCV glycoprotein. J. Gen Virol. 80:887-896.
116. Min, K. H., Y. C. Sung, S. Y. Choi, B. Y. Ahn. 1999. Functional interaction between conserved motifs of the hepatitis C virus RNA helicase protein NS3. Virus Genes. 19:33-43.
117. Mizushima, H., M. Hijikata, Y. Tanji, K. Kimura, and K. Shimotohno. 1994. Analysis of N-terminal processing of hepatitis C virus nonstructural protein 2. J. Virol. 68:2731-2734.
118. Morgenstern, K. A., J. A. Landro, K. Hsiao, C. Lin, Y. Gu, M. S. Su, and J. A. Thomson. 1997. Polynucleotide modulation of the protease, nucleoside triphosphatase, and helicase activities of a hepatitis C virus NS3-NS4A complex isolated from transfected COS cells. J. Virol. 71:3767-3775.
119. Muramatsu, S., S. Ishido, T. Fujita, M. Itoh, H. Hotta. 1997. Nuclear localization of the NS3 protein of hepatitis C virus and factors affecting the localization. J. Virol. 71: 4954-4961.
120. Mutsunori, S., A. Toshitaka, C. David, Pendleton, et. al 1992. Induction of cytotoxic T cell to a cross-reactive epitope in the hepatitis C virus nonstructural RNA polymerase-like protein. 66:4098-4106.
121. Nasoff, M.S., S. L. Zebedee,G. Inchauspe, and A. M. Prince.1991. Identification of an immunodominant epitope within the capsid protein of hepatitis C virus Proc. Natl. Acad. Sci. USA 88:5462-5466.
122. Neddermann, P., A. Clementi, and R. De Francesco. 1999. Hyperphosphorylation of the hepatitis C virus NS5A protein requires an active NS3 protease, NS4A, NS4B, and NS5A encoded on the same polyprotein. J. Virol. 73:9984-9991.
123. Ni, Y. H., H. H. Lin, P. J. Chen, H. Y. Hsu, D. S. Chen and M. H. Chang. 1994. Temporal profile of hepatitis C virus antibody and genome in infants born to mothers infected with hepatitis C virus but without human immunodeficiency virus coinfection. J. Hepatol. 20:641-645.
124. Oberste, M. S., and J. B. Flanegan. 1988. Measurement of poliovirus RNA polymerase binding to poliovirion and nonviral RNAs using a filter-binding assay. Nucleic Acids Res. 16 :10339-10352.
125. Oh, J. W., T. Ito, and M. M. Lai. 1999. A recombinant hepatitis C virus RNA-dependent RNA polymerase capable of copying the full-length viral RNA. J. Virol. 73:7694-7702.
126. Pause, A., N. Methot, and N. Sonenberg. 1993. The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis. Mol. Cell. Biol. 13:6789-6798.
127. Pawlotsky, J. M. 1998 Hepatitis C virus infection: viral/host interaction. J. Virol. Hepat. 1:3-8.
128. Pawlotsky, J.M., and G. Germanidis. 1999. The non-structural 5A protein of hepatitis C virus. J. Viral. Hepat. 6:343-356.
129. Petrik, J., H., Parker, and G. J. Alexander. 1999. Human hepatic glyceraldehydes- 3-phosphate dehydrogenase binds to the poly(U) tract of the 3* non-coding region of hepatitis C virus genomic RNA. J. Gen. Virol. 80:3109-3113.
130. Pileri, P.,Y. Uematsu, S. Campagnoli, G. Galli, F. Falugi, R. Petracca, A. J. Weiner, M. Houghton, D. Rosa, G. Grandi, and S. Abrignani. 1998. Binding of hepatitis C virus to CD81. Science 282:938-941.
131. Poch, O., I. Sauvaget, M. Delarue, and N. Tordo. 1989. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J. 8:3867-3874.
132. Polyak, S. J., D. M. Paschal, S. McArdle, M. J. Gale, Jr, D. Moradpour, and D. R. Gretch. 1999. Characterization of the effects of hepatitis C virus nonstructural 5A protein expression in human cell lines and on interferon-sensitive virus replication. Hepatology 29:1262-1271.
133. Porter, D. J. T. 1998. A kinetic analysis of the oligonucleotide-modulated ATPase activity of the helicase domain of the NS3 protein from hepatitis C virus: the first cycle of interaction of ATP with the enzyme is unique. J. Biol. Chem. 273:14247-14253.
134. Preugschat, F., D. R. Averett, B. E. Clarke, and D. J. T. Porter. 1996. A steady-state and pre-steady-state kinetic analysis of the NTPase activity associated with the hepatitis C virus NS3 helicase domain. J. Biol. Chem. 271:24449-24457.
135. Ray, R.B., L. M. Lagging, K. Meyer, R. Steele, and R. Ray. 1995. Transcriptional regulation of cellular and viral promoters by the hepatitis C virus core protein. Virus Res. 37 :209-220.
136. Ray, R. B., L. M. Lagging, K. Meyer, R. Steele, and R. Ray.1996. A role in the regulation of HCV-infected growth and in the transformation to tumorogenic phenotype. J. Virol. 70:4438-4443.
137. Reynolds, J. E., A. Kaminski, H. J. Kettinen, K. Grace, B. E. Clarke, A. R. Carroll, D. J. Rowlands, and R. J. Jackson. 1995. Unique features of internal initiation of hepatitis C virus RNA tr
138. Rozen, F., J. Pelletier, H. Trachsel, and N. Sonenberg. 1989. A lysine substitution in the ATP-binding site of eukaryotic initiation factor 4A abrogates nucleotide-binding activity. Mol. Cell. Biol. 9:4061-4063.
139. Saito, I., T. Miyamura, A. Ohbayashi, H. Harada, T. Katayama, S. Kikuchi, Y. Watanabe, S. Koi, M. Onji, Y. Ohta, Q.-L., Choo, M. Houghton, and G. Kuo. 1990. Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. Proc. Natl. Sci. Acad. USA 87:6547-6549.
140. Sakamuro, D., T. Furukawa, and T. Takegami. 1995. Hepatitis C virus nonstructural protein NS3 transforms NIH 3T3 cells. J. Virol. 69: 3893-3896.
141. Sansonno,D.E.,and F. Dammacco. 1989. Antibodies to hepatitis C virus in non-A, non-B post-transfusion and cryptogenetic chronic liver disease. Lancet 2:798-799.
142. Santolini, E., G. Migliaccio, and N. La Monica.1994. Biosynthesis and biochemical properties of the hepatitis C virus core protein. J. Virol. 68:3631-3641.
143. Schmid, S. R., and P. Linder. 1992. D-E-A-D protein family of putative RNA helicases. Mol. Microbiol. 6:283-292.
144. Selby, M. J., Q.-L. Choo, K. Berger, G. Kou, E. Glazer, M. Eckart, C. Lee, D. Chien, C. Kuo, and M. Houghton. 1993. Expression, identification and subcellular localization of the proteins encoded by the hepatitis C viral genome. J. Gen. Virol. 74,1103-1113.
145. Shi, P.-Y., M. A. Brinton, J. M. Veal, Y. Y. Zhong, and W. D. Wilson. 1996. Evidence for the existence of a pseudoknot structure at the 3'' terminus of the flavivirus genomic RNA. Biochemistry 35:4222-4230.
146. Shiba, J., H. Ohba, Y. Matsuura, Y. Watanaba, T. Katayama, S. Kikuchi, I. Saito, and T. Miyamura.1991. Serodiagnosis of hepatitis C virus (HCV) infection with an HCV core protein molecularly expressed by a recombinant baculovirus. Proc. Natl. Acad. Sci. USA 88:4641-4645.
147. Shoji, I., T. Suzuki, M. Sato, H., Aizaki, T. Chiba, Y. Matsuura, and T. Miyamura. 1999. Internal processing of hepatitis C virus NS3 protein. Virology. 254:315-324.
148. Simmonds, P., E. C. Holmes, T. A. Cha, S. W. Chan. F. McOmish, B. Irvie, E. Beall, P. L. Yap, J. Kolberg, and M. S. Urdea. 1993. Classification of hepatitis C virus into six major genotype and a series of subtypes by phylogenetic analysis of the NS5 region. J. Gen Virol. 74:2391-2399.
149. Singh R. N. and T. W. Dreher. 1997. Turnip yellow mosaic virus RNA-dependent RNA polymerase: initiation of minus strand synthesis in vitro. Virology 233:430-439.
150. Song, C., and A. E. Simon. 1995. Requirement of a 3''-terminal stem-loop in in vitro transcription by an RNA-dependent RNA polymerase. J. Mol. Biol. 254:6-14.
151. Suzich, J. A., J. K. Tamura, F. Palmer-Hill, P. Warrener, A. Grakoui, C. M. Rice, S. M. Feinstone, and M. S. Collett. 1993. Hepatitis C virus NS3 protein polynucleotide-stimulated nucleoside triphosphatase and comparison with the related pestivirus and flavivirus enzymes. J. Virol. 67:6152-6158.
152. Suzuki, R., T. Suzuki, K. Ishii, Y. Matsuura, and T. Miyamura. 1999. Processing and functions of hepatitis C virus proteins. Intervirology 42:145-152.
153. Tai, C.-L., W.-K. Chi, D.-S. Chen, and L.-H. Hwang. 1996. The helicase activity associated with hepatitis C virus nonstructural protein 3 (NS3). J. Virol. 70:8477-8484.
154. Takahashi, K., S. Kishimoto, H. Yoshizawa, H. Okamoto, A. Yoshizawa, and S. Mishiro. 1992. p26 protein and 33 nm particle associated with nucleocapsid of hepatitis C virus recovered from the circulation of infected hosts. Virology 191:431-434.
155. Takamizawa, A., C. Mori, I. Fuke, S. Manabe, S. Murakami, J. Fujita, E. Onishi, T. Andoh, I. Yoshida, and H. Okayama. 1991. Structure and organization of the hepatitis C virus genome isolated from human carriers. J. Virol. 65:1105-1113.
156. Tanaka, T., N. Kato, M.-J. Cho, and K. Shimotohno. 1995. A novel sequence found at the 3* terminus of hepatitis C virus genome. Biochem. Biophys. Res. Commun. 215:744-749.
157. Tanaka, T., N. Kato, M.-J. Cho, K. Sugiyama, and K. Shimotohno. 1996. Structure of the 3'' terminus of the hepatitis C virus genome. J. Virol. 70:3307-3312.
158. Tang, S., A. J. Collier, and R. M. Elliott. 1999. Alternation to both the primary and predicted secondary structure of stem-loop IIIc of the hepatitis C virus 1b 5* untranslated region (5*UTR) lead to mutants severely defective in translation which cannot be complemented in trans by the wild-type 5*UTR sequence. J. Virol. 73:2359-2364.
159. Tanimoto, A., Y. Ide, N. Arima, Y. Sasaguri, R. Padmanabhan. 1997. The amino terminal deletion mutants of hepatitis C virus nonstructural protein NS5A function as transcriptional activators in yeast. Biochem. Biophys. Res. Commun. 236:360-364.
160. Tanji, Y., T. Kaneko, S. Satoh, and K. Shimotohno. 1995. Phosphorylation of hepatitis C virus-encoded nonstructural protein NS5A. J Virol.69: 3980-3986.
161. Taylor, D. R., S. T. Shi, P. R. Romano, G. N. Barber, and M. M. C. Lai. 1999. Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science. 285:107-110.
162. Tomei, L., C. Failla, E. Santolini, R. De Francesco, and N. La Monica. 1993. NS3 is a serine protease required for processing of hepatitis C virus polyprotein. J. Virol. 67:4017-4026.
163. Tsuchihara K., T. Tanaka, M. Hijikata, S. Kuge, H. Toyoda, A. Nomoto, N. Yamamoto, and K. Shimotohno. 1997. Specific interaction of polypyrimidine tract-binding protein with the extreme 3''-terminal structure of the hepatitis C virus genome, the 3''X. J. Virol. 71:6720-6726.
164. Tsukiyama-Kohara K., N. Iizuka, M. Kohara, and A. Nomoto. 1992. Internal ribosome entry site within hepatitis C virus RNA. J. Virol. 66:1476-1483.
165. Tu., C, T. H. Tzeng, and J. A., Bruenn. 1992. Ribosomal movement impeded at a pseudoknot required for frame shifting. Proc. Natl. Acad. Sci. USA 89:8636-8640.
166. Tu, H., L. Gao, S. T. Shi, D. R. Taylor, T. Yang, A. K. Mircheff, Y. Wen, A. E. Gorbalenya, S. B. Hwang and M. M. Lai. 1999. Hepatitis C virus RNA polymerase and NS5A complex with a SNARE-like protein. Virology 263:30-41.
167. Walker, J. E., M. Saraste, M. J. Runswick, and N. J. Gay. 1982. Distantly related sequences in the *- and *-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1:945-951.
168. Wang, C., P. Sarnow, and A. Siddiqui. 1993. Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome binding mechanism. J. Virol. 67:3338-3344.
169. Warrener, P., J. K. Tamura, and M. S. Collett. 1993. RNA stimulated NTPase activity associated with yellow fever virus NS3 protein expressed in bacteria. J. Virol. 67:989-996.
170. Weiner, a. J. M. J. Brauer, J. Rosenblatt, K. H. Richman, J. Tung, K. Cawford, F. Bonino, G. Saracco, Q. L. Choo, M. Houghton, and J. H. Han. 1991. Variable and hypervariable domains are found in the region of HCV corresponding to the flavivirus envelope and NS1 proteins and the pestivirus envelope glycoproteins. Virology. 180:842-848.
171. Westaway E. G. 1987. Flavivirus replication strategy. Adv. Virus Res. 33:45-90.
172. Yamada, N., K. Tanihara, A. Takada, T. Yorihuzi, M. Tsutsumi, H. Shimomura, T. Tsuji, and T. Date. 1996. Genetic organization and diversity of the 3'' noncoding region of the hepatitis C virus genome. Virology 223:255-261.
173. Yamashita, T., S. Kaneko, Y. Shirota, W. Qin, T. Nomura, K. Kobayashi, and S. Murakami. 1998. RNA-dependent RNA polymerase activity of the soluble recombinant hepatitis C virus NS5B protein truncated at the C-terminal region. J. Biol. Chem. 273:15479-15486.
174. Yao, N., T. Hesson, M. Cable, Z. Hong, A. D. Kwong, H. V. Le, and P. C. Weber. 1997. Structure of the hepatitis C virus RNA helicase domain. Nat. Struct. Biol. 4:463-467.
175. Yen, J.-H., S. C. Chang, C.-R. Hu, S.-C. Chu, S.-S. Lin, Y.-S. Hsieh, and M.-F. Chang. 1995. Cellular proteins specifically bind to the 5*-noncoding region of hepatitis C virus RNA. Virology 208:723-732.
176. You, L. R., C. M. Chen, and Y. H. W. Lee. 1999. Hepatitis C virus core protein enhances NF-kappaB signal pathway triggering by lymphotoxin-beta receptor ligand and tumor necrosis factor alpha. J. Virol. 73:1672-1681.
177. Yu., W., and J. L. Leibowitz. 1995. A conserved motif at the 3* end of mouse hepatitis virus genomic RNA required for host protein binding and viral RNA replication. Virology. 214: 128-138.
178. Yuan, Z-H., U. Kumar, H. C. Thomas, Y-M. Wen, and J. Monjardino. 1997.
Expression, purification, and partial characterization of HCV RNA polymerase. Biochem. Biophys. Res. Commun. 232:231-235.
179. Zignego, A. L., D. Macchia, M. Monti, V. Thiers, M. Mazzetti, M. Foschi, E. Maggi, S. Romagnani, P. Gentilini, and C. Brechot. 1992. Infection of peripheral mononuclear blood cells by hepatitis C virus. J. Hepatol. 15:382-386.
180. 陳知信. 1993. D 型肝炎抗原在大腸桿菌中的表現. 碩士論文
181. 高詮宏. 1994. C 型肝炎病毒 NS3 基因表現與其功能研究. 碩士論文
182. 邱瓊慧. 1996. C 型肝炎病毒 NS3 結合ATP 及 RNA 之功能區分析. 碩士論文
183. 許曉薇. 1999. C 型肝炎病毒核心蛋白質調控 p21(WAF1/CIP1)基因之分子機制. 碩士論文
184. 張靜怡. 1999. C 型肝炎病毒非轉譯區與細胞因子之交互作用. 碩士論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊