(18.205.60.226) 您好!臺灣時間:2019/12/15 10:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:賴全裕
研究生(外文):Chane-Yu, Lai
論文名稱:氣膠個數量測方法之評估
論文名稱(外文):Performance evaluation of aerosol number measurement
指導教授:陳志傑陳志傑引用關係
指導教授(外文):Chih-Chieh, Chen
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:100
中文關鍵詞:纖維分徑採樣器均勻度精密度準確度
外文關鍵詞:fibersize-selective sampleruniformityprecisionaccuracy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
作業環境的採樣目的,主要為評估氣膠沈積於人體呼吸系統的健康危害。而性能良好的分徑採樣器,除了能提供較佳的環境氣膠採樣之外,並能準確的評估氣膠對人體之危害。因此,較低的氣膠採樣損失率,是分徑採樣器的首要關鍵。然而一般以50 mm長度的石綿採樣器,配合使用25 mm的MCE濾紙進行纖維性氣膠採樣時,濾紙收集纖維性氣膠時的均勻度(Uniformity)問題,會直接影響濾紙鏡檢的準確性與精密性。主要因為傳統的石綿分析方法為應用位相差顯微鏡,隨機選擇濾紙上的任一位置進行鏡檢、分析,而沈積於濾紙上之纖維性氣膠的分佈均勻度則益顯其重要性。
以氣膠氣動直徑為函數的理想分徑準則,是國際上的分徑採樣趨勢。在1984年US-EPA採用了PM10的採樣準則,而最新的趨勢則是ISO/CEN/ACGIH 1989年提出之可吸入性、胸腔性、呼吸性氣膠三種分徑建議。而現有的呼吸性或胸腔性氣膠分徑採樣器,並無法完全適用於纖維性氣膠的採樣。所以截至目前為止,並無合適的呼吸區或胸腔區分徑的纖維性氣膠採樣器。
本研究以市售採樣器為主,以氣動粒徑微粒粒徑偵測儀(Aerodynamic Particle Sizer)進行分徑採樣器精密性、穩定性的統計模式發展,包含合理的測試標準與規範之探討,並實驗研究影響氣膠收集於濾紙上均勻度之因子。另以人眼判定輔以MATLAB程式進行均勻度影像分析之判斷。而最終與工業衛生廣泛應用之石綿鏡檢方法比較,並進行纖維性採樣器之研發,不僅能符合國際新定義的分徑器,而同時也能達到纖維性微粒均勻分佈的需求,增進纖維性氣膠計數方法的精密性與準確性。
The ultimate goal of aerosol sampling is to evaluate the health hazard caused by the deposited particles in the human breathing system. The ideal sampler that can provide the accurate monitoring of the ambient aerosol is also used to estimate the contribution of the human health effects. Therefore, aerosol must enter the sampler and be deposited on the collection medium without loss. Currently conducting with a 25-mm diameter filter cassette, and a 50-mm long straight tubular inlet to sample for asbestos and other fibers requires that the sample be uniformly deposited on the filter. The asbestos fiber analytical methods require such uniform deposition because only small, randomly chosen locations on the filter are observed in the analysis. However, non-uniform fiber deposition can directly reduce the accuracy and precision of the fiber measurement method.
The latest performance standards, set by the American Conference of Governmental Industrial Hygienists (ACGIH), International Standards Organization (ISO), and Comite European de Normalisation (CEN), clearly define the aerosol size-selective characteristics of respirable convention (alveolar or gas exchange region), thoracic convention (tracheo-bronchial region), and inhalable convention (head-airways region). These penetration curves have been modeled. Application of the respirable criterion or the thoracic criterion to fiber sampling would restrict the measurement of fibers to those most likely to pose a hazard. For now, size-selective sampling has not been officially applied to fiber method, so one of the major objectives of this work is to develop a respirable sampler for fibrous aerosol particles. This size-selective device is expected to deliver an aerosol deposition with satisfactory uniformity.
An ultrasonic atomizing nozzle was used to generate challenge aerosol particles (methylene blue). A 25-mCi radioactive source, Po210, was used to neutralize the methylene blue particles to the Boltzmann charge equilibrium. An Aerodynamic Particle Sizer was used to measure the number concentrations and size distributions upstream and downstream of the size-selective devices. Both the precision and accuracy of the samplers to be tested was analyzed and revealed as a function of particle size. In addition to the fit to the internationally-defined convention, the filter deposit, after exposed to the water vapor, was examined visually or analyzed by using a MATLAB program for uniformity. All the currently commercially available aerosol samplers and the devices developed in this study were evaluated for not only the fit to the international standards but also whether the device(s) delivered a uniform distribution across the filter. The fiber measurement method was compared with the regular PCM (Phase Contrast Microscope) procedure.
封面
目錄
中文摘要
英文摘要
計劃緣起
文獻回顧
計劃目的
論文內容
第一篇論文: Chang YC, Wang JD. Cumulative injury rate and potential workdays and
salary lost. Scand J Work Environ Health 1995;21;494-503
第二篇論文: Chang YC, Wang JD Trends in major occupational injuries in different
industrial divisions in Taiwan durign 1983-1993. J Occup Health 1997;39;295-301
第三篇論文: Chang YC. ChenSea MJ Jang Y.Wang JD A simple self-rating assessment
method of residual work capability for occupational permanent disabilities Am J Ind Med 2000(accepted)
參考文獻
附錄
American Conference of Governmental Industrial Hygienists. Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. ACGIH, Cincinnati, OH (1998).
Bartley, D.L.; Chen, C.C.; Song, R.; Fischbach, T.J.: Respirable Aerosol Sampler Performance Testing. Am. Ind. Hyg. Assoc. J. 55(11):1036-1046 (1994).
Bartley, D.L.; Breuer, G.M.: Analysis and Optimization of the Performance of the 10 mm Cyclone. Am. Ind. Hyg. Assoc. J. 43:520 (1982).
Bartley, D.L. and Doemeny, L.J.: Critique of the 1985 ACGIH Report on Particle Size-Selective Sampling in the Workplace. Am. Ind. Hyg. Assoc. J. 47: 443-447 (1986).
Blachman, M.W. and Lippmann, M.: Performance Characteristics of the Multicyclone Aerosol Sampler. Am. Ind. Hyg. Assoc. J. 35(6):311-326 (1974).
Bowman, J.D.; Bartley, D.L.; Breuer, G.M.; Moemeny, L.J. and Murdock, D.J.: Accuracy Criteria Recommended for the Certification of Gravimetric Coal Mine Dust Samplers. NTIS No. 85222446. NIOSH, Cincinnati, OH, USA (1984).
Chan, T.L. and Lippmann, M.: Experimental Measurements and Empirical Modelling of the Regional Deposition of Inhaled Particles in Humans. Am. Ind. Hyg. Assoc. J. 41: 399 (1980).
Chen, C.C. and Huang, S.H.: Shift of Aerosol Penetration of Respirable Cyclone Samplers. Am. Ind. Hyg. Assoc. J. (acceptted, 1998).
Chen, C.C.; Lai, C.Y.; T.S. Shih and Yeh, W.Y.: Development Of Respirable Aerosol Samplers Using Porous Foams, accepted, Am. Ind. Hyg. Assoc. J. (in press, 1998).
Cheng, Y.S.; Yeh, H.C.; Swift, D.L.: Aerosol Deposition in Human Nasal Airway for Particle 1 nm to 20 mm: A Model Study. Radiation Protection Dosimetry. 38: 41-47 (1991).
Davies, C.N. and Subari, M.: Aspiration above Wind Velocity of Aerosols with Thin-Walled Nozzles Facing and at Right Angles to the Wind Direction. Journal of Aerosol Science, 13: 59-71 (1982).
European Sstandardization Committee (CEN): Size Fraction Definitions for Measurement of Airborne Particles in the Workplace. Approved for publication as prEN 481, CEN, Brussels (1992).
International Organization for Standardization: ISO7708 Air Quality — Particle Size Fraction Definitions for Health-related Sampling. International Organization for Standardization. Geneva, Switzerland (1993).
ISO: Air Quality-Particle Size Fraction Definitions for Health Related Sampling. Technical Report ISO/TR 7708 - 1983 (E). International Organization for Standards, Geneva, Switzerland (1983).
Kenny, L.C. and Liden, G.: The Application of Performance Standards to Personal Airborne Dust Samplers. Ann. Occup. Hyg. 33: 289-300 (1989).
Kenny, L.C.: Report of Prograss towards the Development of a Performance Standard for Aerosol Sampling Instruments Used in Occupational Hygiene. J. Aerosol Sci. 23(7) 773-339 (1992).
Lapp, N.L.; Hankinson, J.L.; Amandus, H.; Palmes, ED.: Variability in the Size of Airspaces in Normal Human Lungs as Estimated by Aerosols. Thorax 30: 293 (1975).
Liden, G.; Gudmundsson, A.: Optimization of a Cyclone to the 1993 International Sampling Convention for Respirable Dust. Appl. Occup. Envrion. Hyg. 11(12):1398 (1996).
Liden, G. and Kenny, L.C.: The Performance of Respirable Dust Samplers: Sampler Bias, Precision and Inaccuracy. Ann. Occup. Hyg. 36(1): 1-22 (1992).
Liden, G. and Kenny, L.C.: Optimization of the Performance of Existing Respirable Dust Samplers. Appl. Occup. Environ. Hyg. 8(4): 386-391 (1993).
Lippmann, M.; Yeates, D.B.; Albert, R.E.: Deposition, Retention and Clearance of Inhaled Particles. Br. J. Ind. Med. 37: 337 (1980).
Orenstein, A.J. (ed.): Recommendations adopted by the Pneumoconiosis Conference. In proceedings of the Pneumoconiosis Conference, Churchill, London, pp. 619-621 (1960).
Soderholm, S.C.: Proposed International Conventions for Particle Size-Selective Sampling. Ann. Occup. Hyg. 33(3): 301-320 (1989).
Tsai, P.J.; Vincent, J.H.; Wahl, G. and Maldonado, G.: Occupational Exposure to Inhalable and Total Aerosol in the Primary Nickel Production Industry. Environmental and Occupational Medicine (British Journal of Industrial Medicien 52: 793-799 (1995).
Tsai, P.J.; Vincent, J.H. and Mark, D.: Semi-Empirical Model for the Aspiration Efficiencies of Personal Aerosol Samplers of the Type Widely Used in the Occupational Hygiene. Annals of Occupational Hygiene 40:93-113 (1996).
Tsai, P.J.; Werner, M.A.; Vincent, J.H. and Maldonado, G.: Worker Exposures to Nickel-Containing Aerosol in Two Electroplating Shops: Comparison between Inhalable and Total Aerosol. Applied Occupational and Environmental Hygiene 11: 484-492 (1996).
Tsai, P.J.; Vincent, J.H.; Wahl, G. and Maldonado, G.: Worker Exposure to Inhalable and Total Aerosol during Nickel Alloy Production. Annals of Occupational Hygiene 40: 651-659 (1996).
Vincent, J.H.: Aspiration Efficiency of a Blunt Sampler in Moving Air, in Aerosol Sampling: Science and Practice, John Wiley ad Sons, Chichester, pp.119-137 (1989).
Selvin, S.: Practical Biostatistical Method, Thomson Publishing Company (1994).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔