跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 09:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙志強
研究生(外文):Chao,Chih-Chiang
論文名稱:Si-Al-C基無機膜及其單雙成份氣體透析特性
論文名稱(外文):Synthesis of Si-Al-C based inorganic membrane and its permeation properties of single and binary gas compoennts
指導教授:蔡大翔
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:85
中文關鍵詞:無機膜矽鋁碳基氣體分離熱裂解
外文關鍵詞:inorganic membraneSi-Al-Cgas seperationpyrolysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
論文摘要
我們由聚二甲基矽烷(PMS)與乙醯丙酮酸酯鋁(Al-acac)合成矽鋁碳基無機膜,這是先前實驗室碳矽基無機膜研究的延伸,由成膜性質的測試,PMS混合不同的Al-acac、Zr-acac以及Pt-acac,我們發現PMS添加Al-acac,成膜性質好,所以我們選擇Al-acac作為添加物。
PMS添加10wt%的Al-acac溶液,擠入多孔氧化鋁管內,進行733K熱轉化反應、473K的氧熟化,最後在不同溫度下熱裂解,形成Si-Al-C基無機膜。透過率的量測藉由雙套管氣體透過實驗裝置;,氣體透過特性隨著裂解溫度的變化,可以透過BET、IR、及TGA的分析來加以說明。
大致上,Si-Al-C基無機膜的透過率隨裂解溫度增加而降低,雖然降低的程度低於矽碳基無機膜;PMS添加10wt%的Al-acac所形成的膜,在573K、773K及973K裂解後,有著活化擴散的特性,無機膜在1173K裂解後顯示氣體透過由knudsen或fickian擴散所主導;,773K裂解膜,在室溫下對氫氣的透過率為1.99×10-9 mol pa-1 s-1 m-2,氫氣/氮氣的透選率為4.77,氫氣/異丁烷透選率為26.3,在473K時,氫氣的透過率為6.57×10-9 mol pa-1 s-1 m-2,氫氣/氮氣的透選率為4.80,氫氣/異丁烷透選率為7.20。
973K裂解膜所做的氫氣/氮氣、氫氣/異丁烷,氮氣/異丁烷兩成份氣體透過,與單成份氫氣、氮氣、異丁烷透過相比較,較輕氣體成份的高透過率,例如氫氣,特別是在室溫下,會受到較重氣體成份吸附影響而降低,因為較輕氣體成份透過率的降低幅度大於較重氣體成份的透過率降低幅度,膜的透選率也因而降低。
BET分析指出,PMS添加10wt%的Al-acac的陶瓷先驅物的孔洞結構,相較於PMS陶瓷先驅物,較不受熱裂溫度的影響,BET分析的結果,與氣體透過隨裂解溫度的變化是一致的;高於1173K裂解後,雖然透過率增加,但BET表面積驟降,完整的膜受高熱而破壞,失去氣體的透選率;IR分析指出,Al-acac很容易導入PMS陶瓷先驅物中,甚至在573K的低溫。

ABSTRACT
The Si-Al-C based inorganic membrane is synthesized from polydimethylsilane PMS and aluminum acetylacetonate Al-acac. The research is an extension of the previous study on Silicon-Carbon based membrane of our laboratory. The selection of Al element is the result of a screening test of PMS+Al-acac, PMS+Zr-acac, and PMS+Pt-acac. The film of PMS+Al-acac is the one least prone to cracks.
The PMS+10wt% Al-acac solution is infiltrated into a porous alumina tube, and undergoes 733K thermolytic reaction, 473Koxygen curing, and pyrolysis at various temperatures. The permeation properties were measured in a setup of double pipe configuration. The variation of permeation properties with pyrolysis temperature is rationalized through the BET, IR, and TGA analysis.
Generally the permeances of Si-Al-C based membrane decrease with the pyrolysis temperature, although the extent of reduction is less than the Si-C based membrane. The PMS+10%Al-acac membrane, pyrolyzed at 573, 773, and 973 K, exhibits the characteristics of activated diffusion. The membrane pyrolyzed at 1173 K indicates that knudsen or fickian diffusion predominates. The 773K-pyrolyzed membrane shows a hydrogen permeance 1.9910-9mol Pa-1s-1m-2, H2/N2 selectivity 4.77 H2/iC4 selectivity 26.3 at room temperature, and H2 permeance 6.5710-9 mol Pa-1s-1m-2, H2/N2 selectivity 4.80 H2/iC4 selectivity 7.20 at 473 K temperature.
The permeances of binary component of 973K-pyrolyzed membrane, H2/N2, H2/iC4, and N2/iC4 are compared with the permeances of single component, H2, N2, iC4. The higher permeances of light component, such as hydrogen, are reduced by the adsorption of heavy component, especially under room temperature. Since the reduction on the permeance of light component is more than that on heavy component, the selectivity of membrane is reduced.
BET analysis indicates that the pore structure of PMS+10%Al-acac preceramic is less influenced by the pyrolysis temperature, compared with that of PMS preceramic. The BET result is consistent with the membrane permeance variation with pyrolysis temperature. Above 1173 K, the BET surface area drastically reduced, and the integrity of membrane is damaged and the selectivity is lost, although the permeance increases. IR analysis indicates that Al-acac is easily incorporated into the PMS preceramic, even under a low temperature, such as 573 K.

摘要
第 壹 章 研究動機
1.1 研究室先前研.......................5
1.2無機膜材質..........................6
1.3 孔洞結構形狀大小與混合氣體的關係...8
第 二 章 陶瓷多孔膜的發展
2.1 碳分子篩...........................10
2.2 碳化矽氣體分離膜...................13
2.3 氧化矽氣體分離膜...................14
2.4 沸石氣體分離膜.....................20
第 三 章 多孔膜氣體輸送機構 .....................22
第 四 章 陶瓷多孔膜之應用 .......................25
第 五 章 多孔氣體分離膜透過率與透選率文獻數值
第 六 章 實驗方法、設備與藥品
6.1 實驗步驟流程圖.....................33
6.2 實驗設備圖.........................34
6.3 陶瓷先驅高分子製備無機膜...........35
6.3.1 陶瓷先驅高分子的溶液配製
6.3.2 多孔氧化鋁支撐管材的製作
6.3.3陶瓷先驅高分子的塗覆
6.3.4多孔氧化鋁管覆膜後熱處理
6.4 氣體透析(氣體透過率與透選率)實驗.37
6.4.1 氣體濃度校正曲線的量測
6.4.2 單成分氣體透析實驗
6.4.3 雙成分氣體透析實驗
6.5 BET、IR、TGA/DTA儀器分析...........38
6.6 氣體透過率計算.....................39
6.7 實驗藥品與氣體.....................40
6.8 實驗儀器與設備.....................41
第 七 章 實驗結果與討論
7.1.1 多孔氧化鋁支撐管材的壓汞儀分析...43
7.1.2 PMS成膜測試.....................45
7.2 Si-Al-C基無機分離膜氣體透析特性....
7.2.1 單成分氣體透析實驗...............45
7.2.2 973K熱裂解之Si-Al-C......................53
膜,雙成分氣體透析實驗
7.3 裂解Si-Al-C基無機膜材的BET量測.........61
7.4 混合PMS與Al-acac的陶瓷先驅高分子的熱重分析 68
7.5 覆膜氧化鋁的SEM截面與表面觀察..........70
7.6 PMS添加20wt%Al-acac在各溫度裂解的IR 圖譜比較 72
結論
附錄一 分子動力直徑
附錄二 透過率單位換算表
參考資料

參考文獻
1. F. Babonneau, G. D. Soraru, “Synthesis and Characterization of Si-Zr-C-O ceramic from polymer precusors,” J. European Ceramic Society, 8, 29 (1991).
2. T. Ishikawa, Y. Kohtoku, K. Kumagawa, T. Yamamura and T. Nagasawa, “High strength alkali-resistant sintered fiber stable to 2200oC,” Nature, 391, 773 (1998).
3. T. Yamamura, T. Ishikawa, T. Shibuya, M. Hisayuki, and Okamura, “Development of a new continuous Si-Ti-C-O fiber using an organometallic polymer precusor,” J. Mater. Sci., 23, 2589 (1988).
4. F. Babonneau, G. D. Soraru, K. J. Thorne, J. D. Mackenzie, “Chemical characterization of Si-Al-C-O precusor and its pyrolysis,” J. Am.Ceram.Soc., 74, 1725 (1991).
5. S. Yajima, T. Shishido, H. Kayano, K.Okamura, M. Omori, and J. Hayashi, “SiC sintered bodies with three dimensional polycarbosilane as binder,” Nature, 264,238 (1976).
6. T. Ishikawa, Y. Kohtoku, K. Kumagawa, T. Yamamura and T. Nagasawa, “High strength alkali-resistant sintered fiber stable to 2200oC,” Nature, 391, 773 (1998).
7. H.R.Kricheldorf (editor), Silicon in Polymer Synthesis, 243, Springer,Berlin (1996).
8. Shigeharu Morooka and Katsuki Kusakabe, “Microporous Inorganic Membranes for Gas Seperation, ”MRS Bulletin , March,25(1999).
9. D.F.John Ramsy, “Characterization of the Pore Structure of Membranes,” MRS Bulletin,March,36(1999).
10. J. E. Koresh and A. Soffer,Sep.Sci. and Tech., 18,8,723 (1983) .
11. J. Koresh and A. Soffer,J.C.S.Faraday I,76,2457(1980).
12. J. E. Koresh and A. Soffer,Sep.Sci. and tech.,22[2ſ]973 (1987).
13. J. E. Koresh and A. Soffer, “The Carbon Molecular Sieve Membrane. General Properties and the Permeability of CH4/H2 Mixture,” Sep. Sci. and Tech., 22, [2,3] 973 (1987).
14. T. G. Lamond, J. E. Metcalf , P. L. Walker, Carbon, 3, 59 (1965).
15. P. L. Walker, L. G. Austin, and S. P. Nandi, Chem. Phys. Carbon, 2, 257 (1966).
16. J. Petersen and K. Haraya, “Asymmetric Capillary Molecular Sieve Carbon Membranes from Kapton,” 480, ICOM’96 Proceeding, Yokohama (1996).
17. H. Suda, S. Kazama, and K. Haraya, “Gas Separation with Carbon Molecular Sieve Membranes Prepared from Several Types of Polyimides,” 460, ICOM’96 Proceeding, Yokohama (1996).
18. J. Hayashi, M. Yamamoto, K. Kusakabe, and S. Morooka, “Simultaneous Improvement of Permeance and Permselectivity of 3,3’,4,4’-Biphenyltetracaboxylic Dianhydride-4,4’Oxydianili-ne Polyimide Membrane by Carbonization,” Ind. Eng. Chem. Res., 34, 4364 (1995).
19. J. Petersen, M. Matsuda, K. Haraya, “Capillary Carbon Molecular Sieve Membrane Derived From Kapton for High Temperature Gas Separation,” J. Memb. Sci., 131,85 (1997).
20. Y. Kusuki, H. Shimazaki, N. Tanihara, S. Nakanishi, and T. Yoshinaga, “Gas Permeation Properties and Characterization of Asymmetric Carbon Membranes Prepared by Pyrolysis Asymmetric Polyimide Hollow Fiber Membrane,” J. Memb.
Sci., 134, 245 (1997).
21. J.-i. Hayashi, M. Yamamoto, K. Kusakabe, and S. Morooka, “Simultaneous improvement of permeance and permselectivity of 3,3’,4,4’-biphenyltetracarboxylic dianhydride-4,4’-xydiani-line polyimide membrane by carbonization,” Ind. Eng. Chem. Res., 34, 4364 (1995).
22. J.-i. Hayashi, H. Mizuta, M. Yamamoto, K. Kusakabe, and S. Morooka, “Separation of Ethane/Ethylene and Propane/Propylene Systems with a Carbonized BPDA-pp’ODA Polyimide Membrane,” Ind. Eng. Chem. Res., 35, 4176 (1996).
23. A. Centeno Teresa,B.Fuertes Antonio, “Supported carbon molecular sieve membranes based on a phenolic resin,”J.Memb.Sci.,160,201(1999).
24. E.J.Grosgogeat,J.R.Fried,R.G.Jenkins,and S.T. Hwang, “A Method for the Determination of the Pore Size Distribution of Molecular Sieve Materials and its Application to the Characterization of Partially Pyrolyed polysilastyrene /Porous Glass Composite Membranes,”J.Memb.Sci.,57,237 (1991).
25. A.B.Shelekhin,E.J.Grosgogeat,and S.T.Huang, “Gas Speration Properties of a New Polymer/Inorganic Composite Membrane,”J.Memb.Sci.,66,129(1991).
26.K.Kusakabe,Z.Li,H.Maeda,S.Morooka, “Preparation of Supported Composite Membrane by Pyrolysis of Polycar-bosilane for Gas sepe-ration at High Temperature,”J.Memb. Sci.,103,175 (1995).
27. Z.Li,K.Kusakabe,S.Morooka, “Preparation of themostable Amorphous Si-C-O Membrane and Its Application to Gas Seperation at Elevated Temperature,”J.Memb.Sci.,118,159 (1996).
28.李良倫 “碳化矽分離膜之化學氣相沈積與陶瓷先驅高分子改質” 博士學位論文,中華民國88年7月
29. N. P. Bansal and R. H. Doremus, Handbook of Glass Properties, Academic Press, 27 (1986).
30.G. R. Gavalas, C. E. Megiris, and S. W. Nam, “Deposition of H2 -Permselectivity SiO2 Films,” Chem. Eng. Sci., 44, [9], 1829 (1989).
31.B. K. Sea, K. Kusakabe, and S. Morooka, “Pore Size Control and Gas Permeation Kinetics of Silica Membranes by Pyrolysis of Phenyl-Substituted Ethoxysilanes with Cross-Flow Through a Porous Support Wall,” J. Memb. Sci., 130,41 (1997).
32. S. Kitao and M. Asaeda, “Gas Separation Performance of Thin Porous Silica Membrane Prepared by Sol-Gel and CVD Treatment,” Key Engineering Materials, 61-62, 267 (1991).
33. N. K. Raman and C. J. Brinker, “Organic Template Approach to Molecular Sieving Silica Membranes,” J. Memb. Sci., 105, 273 (1995).
34.B.N.Nair,T.Yamaguchi,T.Okubo,H.Suematsu,K.Keizer,S.I.Nakao.“Sol-Gel Synthesis of Molecular Sieving Silica Membranes,”J.Memb.Sci.,135,237(1997).
35. R.M.de Vos and H. Verweij, “Improved Performance of Silica Membranes for Gas Seperation,”J.Memb.Sci.,143,37(1998).
36. S. W. Nam and G. R. Gavalas, “Stability of H2-Permselective SiO2 Films Formed by CVD,” AIChE Symp. Ser., 268, 68 (1989).
37. Y. Yan,M.E.Davis,G.R.Gavalas, “Preparation of Highly Selective Zeolite ZSM-5 Membranes by a Post-Synthetic Coking Treatments,”J.Memb.Sci.,123,95(1997).
38.K.Aoki,Kusakabe,S.Morooka, “Gas Permeation Properties of A-type Zeolite Membrane Formed on Porous Substrate by Hydrothermal Synthesis,”J.Memb.Sci.,141,197(1998).
39.Z. A. E. P. Vroon,K. Keizer,A. J. Burggraaf, H. Verweij, “Preparation and Characterization of Thin Zeolite MFI Membranes on Porous Supports,”J.Memb.Sci.,144,65(1998).
40.M.-D.Jia,B.Chen,R.D.Noble,J.L.Falconer, “Ceramic-Zeolite composite membranes and their application for seperation of vapor/gas mixture,”J.Memb.Sci.,90,1(1994).
41.Kazuo Nakamoto, “Infrared Spectra of Inorganic and Coordination Compounds,”p.247-256 歐亞 1970

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top