跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/11 05:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳龍江
研究生(外文):Wu Long Jiang
論文名稱:苯乙烯微乳化聚合反應動力學:短鏈醇之效應
論文名稱(外文):Microemulsion Polymerization Kinetics of Styrene : Effect of Short-Chain Alcohol
指導教授:陳崇賢陳崇賢引用關係
指導教授(外文):Chern Chorng Shyan
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:108
中文關鍵詞:微乳化聚合
外文關鍵詞:Microemulsion Polymerization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以SDS作為界面活性劑、以短鏈醇(C4OH、C5OH及C6OH)作為共同界面活性劑,並以水溶性起始劑NaPS進行苯乙烯微乳化聚合反應之動力學研究。藉由添加疏水性染料(blue-70)作為微胞粒子核心形成程序強弱之指標,及改以油溶性起始劑AIBN進行聚合反應,進行粒子核心形成機構之研究。
聚合反應速率隨著起始劑濃度、單體濃度及反應溫度之增加而增加,卻隨著共同界面活性劑濃度之增加而減少。乳漿粒子直徑隨著共同界面活性劑濃度及單體濃度之增加而增加,卻隨著起始劑濃度及反應溫度之增加而減少。高分子分子量隨著單體濃度之增加而微幅增加,卻隨著起始劑濃度、反應溫度及共同界面活性劑濃度之增加而減少。
溶解在水相中的C4OH濃度較高導致C4OH系統較易發生粒子的凝聚現象,且C4OH系統之均質成核的可能性較高。起始劑濃度增加時,水相成核的機率亦增加。油溶性起始劑AIBN形成粒子核心的效率較水溶性起始劑NaPS系統來得低。

The microemulsion polymerizations of styrene with SDS and short-chain alcohols (1-butanol (C4OH), 1-pentanol (C5OH) and 1-hexanol (C6OH) ) as the surfactant and cosurfactant, respectively, were studied. The particule nucleation mechanisms in the polymerizations initiated with a water- soluble NaPS and an oil-soluble 2,2’-azobisisobutyronitrile (AIBN) were investigated by using a water-insoluble dye
(blue-70) as the probe molecule.
The polymerization rate increases with increasing initiator concentration, reaction temperature and monomer concentration, but it decreases with increasing cosurfactant concentration. The average latex particle size increases with increasing monomer and cosurfactant concentrations, but it decreases with increasing initiator concentration and reaction temperature. Molecular weight increases slightly with increasing monomer concentration, but it decreases with increasing initiator concentration, reaction temperature and
cosurfactant concentration.
The probability of particle coagulation is relatively high in the C4OH system, which is attributed to the high C4OH concentration in the water phase. The degree of homogeneous nucleation is higher when C4OH is used as the cosurfactant than the C5OH and C6OH counterparts. Increasing the initiator concentration promotes homogeneous nucleation. The efficiency of the particle nucleation initiated with AIBN is
much lower than that initiated with NaPS.

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 簡介 1
1-2 研究背景及目的 2
第二章 文獻回顧 4
2-1 微乳液簡介 4
2-1-1 微乳液之分類 6
2-1-2 微乳液之應用 7
2-2 乳化聚合反應之成核機構 10
2-2-1 微胞成核 10
2-2-2 均質成核 11
2-2-3 凝聚成核 13
2-2-4 單體液滴成核 13
2-3 微乳化聚合反應之文獻回顧 15
第三章 實驗及方法 25
3-1 實驗藥品 25
3-2 實驗儀器 26
3-3 實驗方法 27
3-3-1 微乳化聚合反應 27
3-3-2 含有疏水性染料之微乳化聚合反應 29
3-4 實驗數據之處理 30
3-4-1 反應轉化率之計算 30
3-4-2 反應前微乳液中被單體膨潤之微胞數計算 31
3-4-3 最終乳漿產品粒子數之計算 32
3-4-4 乳漿產品中染料(Blue 70)含量計算 32
第四章 結果與討論 35
4-1 起始劑濃度之效應 35
4-1-1 C5OH系統之起始劑濃度效應 35
4-1-2 C6OH系統之起始劑濃度效應 40
4-1-3 C4OH系統之起始劑濃度效應 41
4-1-4 比較C4OH、C5OH、C6OH系統之起始劑濃度效應 42
4-2 單體濃度之效應 54
4-2-1 C5OH系統之單體濃度效應 54
4-2-2 C6OH系統之單體濃度效應 55
4-2-3 C4OH系統之單體濃度效應 56
4-2-4 比較C4OH、C5OH、C6OH系統之單體濃度效應 56
4-3 共同界面活性劑濃度之效應 65
4-3-1 C5OH濃度之效應 65
4-3-2 C6OH濃度之效應 66
4-3-3 C4OH濃度之效應 67
4-3-4 比較C4OH、C5OH、C6OH濃度之效應 68
4-4 共同界面活性劑種類之效應 78
4-5 C5OH系統之溫度效應 85
4-6 苯乙烯之微乳化聚合反應粒子核心形成機構 93
4-6-1 起始劑濃度之效應 93
4-6-2 共同界面活性劑種類之效應 95
第五章 結論與建議 98
5-1 結論 98
5-2 建議 100
參考文獻 101
附錄 106

1. L. M. Prince, in "Microemulsions : Theory and Practice" , L. M. Prince, Ed., Academic Press, New York, 45. (1977)
2. M. S. El-Aasser, S. C. Misra, J. W. Vanderhoff and J. A. Manson, J. Coatings Tech., 49 , 71 (1977)
3. D. O. Shah, V. K. Bansal, K. Chen and W. C. Hsieh, in "Improved Oil Recovery by Surfactant Flooding" , D. O. Shah and R. S. Schechter, Ed., Academic Press, New York, 293 (1977)
4. T. P. Hoar and J. H. Schulman, Nature, 152, 102 (1943)
5. K. J. Shinoda, J. Colloid Interface Sci., 4, 24 (1967)
6. M. Kahlweit, R. Strey and G. Busse, J. Phys. Chem., 95, 5344 (1991)
7. A. M. Cazabat, D. Langevin, J. Chem. Phys., 74, 3148 (1981)
8. M. J. Schwager and K. Strickdorn, Chem. Rev., 95, 849 (1995)
9. B. H. J. Robinson, Chem. Soc., Faraday Trans., 86, 3757 (1990)
10. W. D. Harkins, J. Am. Chem. Soc., 69, 1428 (1947)
11. W. V. Smith and R. W. Ewart, J. Chem. Phys., 16, 529 (1948).
12. B. Jacobi, Angew. Chem., 64, 539 (1952).
13. W. J. Priest, J. Phys. Chem., 56, 1077 (1952).
14. R. M. Fitch and C. H. Tsai, Polym. Colloids, Ed. R. M. Fitch, Plenum, New York, 73 (1980).
15. R. M. Fitch and L. B. Shih, Prog. Colloid Polym. Sci., 56, 1(1975).
16. D. H. Napper and R. G. Gilber, Macromol. Chem., Macromol. Symp., 10/11, 503 (1987).
17. P. J. Feeney, D. H. Napper and R. G. Gilbert, Macromolecules, 17, 2520 (1984).
18. J. Ugelstad, F. K. Hansen and S. Lange, Die Makromol. Chem., 175, 507 (1974).
19. J. Ugelstad, M. S. El-Aasser and J. W. Vanderhoff, Polym. Lett., 11, 503 (1973).
20. F. K. Hansen and J. Ugelstad, J. Polym. Sci., Part A : Polym. Chem., 17, 3047 (1979).
21. N. Sutterlin, H. J. Kurth and G. Markomol. Chem., 177, 1549 (1976).
22. T. P. Hoar and J. H. Schulman, Nature, 152, 102 (1943)
23. M. S. El-Aasser, C. D. Lack, Y. T. Choi, T. I. Min, J. W. Vanderhoff and F. M. Fowkes, Colloids Surf., 12, 79 (1984)
24. J. O. Stoffer and T. Bone, J. Polym. Sci. Polym. Chem. Ed., 23, 193 (1985)
25. S. S. Atik and J. K. Thomas, J. Am. Chem. Soc., 103, 4279 (1981)
26. Y. S. Leong and F. Candau, J. Phys. Chem., 86, 2269 (1982)
27. L. M. Gan, C. H. Chew, and S. E. Friberg, J. Macromol. Sci., Chem., A(19), 739 (1983)
28. P. L. Johnson and E. Gulari, J. Polym. Sci., Polym. Chem. Ed., 22, 3967 (1984)
29. A. Jayakrishnan and D. O. Shah, J. Polym. Sci., Polym. Lett. Ed., 22, 31 (1984)
30. F. Candau and Y. S. Leong, J. Polym. Sci., Polym. Chem. Ed., 23, 193 (1985)
31. P. L. Kuo, N. J. Turro, C. M. Tseng, M. S. El-Aasser, and J. W. Vanderhoff, Macromolecules, 20, 1216 (1987)
32. J. S. Guo, M. S. El-Aasser, and J. W. Vanderhoff, J. Polym. Sci., Polym. Chem. Ed., 27, 691 (1989)
33. V. H. Perez-Luna, J. E. Puig, V. M. Castano, B. E. Rodriguez, A. K. Murthy and E. W. Kaler, Langmuir, 6, 1040 (1990)
34. L. M. Gan, C. H. Chew, I. Lye, and T. Imae, Polym. Bulletin, 25, 193-198 (1991)
35. I. Capek and P. Potisk, Eur. Polym. J., 31, 12, 1269-1277 (1995)
36. D. H. Napper and D. R. Kim, Macromol. Rapid Commun., 17, 845-851 (1996)
37. J. Santhanalakshmi and K. Anandhi, J. Appl. Polym. Sci., 60, 293-304 (1996 )
38. J. D. Morgan, K. M. Lusvardi and E. W. Kaler, Macromolecules, 30, 1897-1905 (1997 )
39. X. L. Xu, Z.-C. Zhang, X.-W. Ge and M.-W. Zhang, Colloid Polym. Sci., 276, 534, (1998)
40. X. L. Xu, Z.-C. Zhang, H.-K. Wu, X.-W. Ge and M.-W. Zhang, Polymer, 39, 21, 5245-5248 (1998)
41. I. Capek and V. Juranicova, polym. J., 32, 2, 91-96 (2000)
42. J. S. Guo, E. D. Scudol, J. W. Vanderhoff and M. S. El-Aasser, J. Polym. Sci., Polym. Chem. Ed., 30, 703 (1992)
43. J. S. Guo, M. S. El-Aasser, E. D. Sudol, H. J. Yue and J. W. Vanderhoff, J. Colloid Interface Sci., 140, 175 (1990)
44. I. M. Kolthoff and I. K. Miller, J. Am. Chem. Soc., 73, 3055 (1951)
45. J. Brandrup and E. H. Immergut, “ Polymer Handbook ”, 3nd ed., Willy (1989)
46. H. C. Lee and G. W. Poehlein Polymer Process Engineering, 5. 37 (1987)
47. J. S. Guo, “ Polymerization of Styrene Oil-in-Water Microemulsion ”, Lehigh University, (1990)
48. 劉正偉, 苯乙烯微乳化亦與微乳化聚合反應-共同界面活性劑, 台灣科技大學 (1999)
49. G. Odian, “ Principle of Polymerization ”, 2nd ed., John Wiley & Sons, New York, 261 (1981)
50. M. Nomura, “ Emulsion Polymerization ”, Piirma, 1st ed, Academic Press, New York (1982)
51. H. C. Lee and Gary W. Poehlein, Polym. Process Eng., 5(1), 37-74 (1987)
52. J. A. Alduncin, J. Forcada and J. M. Asua, Macromolecules, 27, 2256-2261 (1994)
53. M. Nomura, J. Ikoma and K. Fujita, J. Polym. Sci., Polym. Ed., 31, 2103-2113 (1993)
54. M. S. Matheson, E. E. Auer, E. B. Bevilacqua and E. J. Hart, J. Am. Chem. Soc., 73, 1700 (1951)
55. A. M. North, “ The Kinetics Free Radic Polyme- rization ”, Pergamon, New York (1966)
56. M. Nomura, K. Yammota, I. Horie and K. Fujita, J. Appl. Polym. Sci., 27, 2483 (1982)
57. R. G. Gilbert and D.H. Napper, JMS-Rev. Macromol Chem. Phys., C23(1), 127 (1983)
58. F. K. Hansen and J. Ugelstad, J. Polym. Sci. Chem. Ed., 17, 3047 (1979)
59. P. C. Hiemenz, “ Principles of Colloid and Surface Chemistry ”, 2nd Ed., Marcel Dekker, New York (1986

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top