跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 10:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳健上
研究生(外文):Chen Jeng-Shang
論文名稱:鉀對無電鍍銅系列觸媒在一氧化碳氧化反應影響之研究
論文名稱(外文):Effect of Potassium on Electroless Copper series Catalyst for CO Oxidation
指導教授:蕭敬業
指導教授(外文):Ching Yeh Shiau
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:93
中文關鍵詞:無電鍍銅觸媒一氧化碳
外文關鍵詞:PotassiumElectroless CopperCatalystCarbon monoxide
相關次數:
  • 被引用被引用:2
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:1
本實驗的目的在於研究鉀添加或物理混合對含鉻、錳、釔或鈰之無電鍍銅觸媒在一氧化碳氧化反應之影響。觸媒是以Al2O3為擔體,而銅含量固定在15wt%,添加劑則從1%到5%不等。在觸媒表面特性的研究上,本實驗以程式升溫的方法來測試一系列無電鍍銅觸媒之活性,並以TPR、N2O化學吸附、XRD、SEM等來作分析。
程溫反應結果顯示,鉀的添加對於含鉻、錳之無電鍍銅觸媒在一氧化碳氧化反應上均有負面作用,且對銅錳觸媒影響較大。TPR結果顯示鉀的添加會使無電鍍銅觸媒的還原波峰,變的低矮而且有拖尾(tailing)的情況,且鉀添加量越多,還原溫度會拖的越長,且還原波峰往有高溫移動的現象,顯示鉀添加後,銅觸媒需要更高的溫度才能完全還原。N2O化學吸附及XRD結果證實鉀的添加會降低銅金屬的分散性、使銅晶粒變大、銅表面積減少,尤其當鉀添加量增加到3%時,分散性降低的情形最為明顯。
在添加鉻、錳、鈰、釔之無電鍍銅觸媒與鉀物理混合後之反應結果顯示,物理混合鉀有促進一氧化碳氧化反應之效果,這是因為鉀可增加觸媒供給電子的能力,使得具
有很強之拉電子能力之氧氣吸附。不管其添加劑含量寡,物理混合鉀量越多,促進效果越大;但其中對含鈰之無電鍍
銅觸媒的促進效果最大,此因鈰具氧空洞為導氧離子的緣故。
The purpose of this study is to investigate the effect of potassium
addition or potassium physical mixing on the additive(Cr, Mn, Y or Ce) added electroless copper catalyst for CO oxidation. γ-Al2O3 was used as support and 15wt% copper loading was chosen as a base for the catalysts. The content of the additives varied from 1% to 5%. All the catalysts with potassium addition were characterized by TPR, N2O Chemisorption, XRD and SEM.
When potassium was coimpregnated with the additive on the electroless copper catalyst, it was found from CO oxidation results that the potassium addition presented negative effect on the catalyst activity , especially for the Cu-Mn catalyst. The TPR profiles indicate
that the addition of potassium would reduce the hight of TPR curve and caused the TPR peak shifting to higher temperature, suggesting that the addition of potassium makes the copper oxide reduction more difficulty. It is also evidence from chemisorption data and XRD spectrum that the addition of potassium would cause copper sintering
, especially when 3% potassium was added into the catalyst .
When potassium was physically mixed with the additive added electroless copper catalyst, CO oxidation data showed that physical
mixing of potassium has provided quite good promoting effect on the copper catalyst for CO oxidation , The more potassium was mixed, the better promoting effect would be obtain. Among the four additive added electroless copper catalysts , Cu-Ce catalyst obtained the most effective promotion in activity from potassium due to their oxygen-conduction nature.
目 錄
摘要…………………………………………………………….I
英文摘要………………………………………………..……III
目錄……………………………………………………………V
圖表索引…………………………………………………..VIII
符號說明………………………………………..……….… X
第一章 緒論………………………………………………….1
第二章 文獻回顧……………………………………………..5
2.1一氧化碳氧化反應觸媒之演進………..….………….5
2.2無電鍍銅觸媒的發展過程……………………………8
2.3金屬添加劑對銅觸媒之影響…………………..……11
2.3.1第一列過渡元素金屬……………………….…11
2.3.2其他金屬添加劑………………………………..14
2.4鉀對觸媒之影響………………………………..…….16
2.5程式升溫還原(TPR)………………………..….…….18
2.6銅表面積之測量…………………………….…..……20
第三章 實驗方法與步驟………………………….…..……23
3.1實驗藥品、氣體與儀器設備…………….…………..23
3.1.1藥品………………………………..……….…..23
3.1.2氣體……………………………………………..24
3.1.3儀器設備…………………………………….…24
3.2觸媒的製備…………………………………………..25
3.2.1無電鍍銅觸媒的製備…………..………..…25
3.2.2修飾性無電鍍銅觸媒的製備……….….……26
3.3觸媒特性的鑑定…………………..………….………27
3.3.1 X光繞射分析(XRD)……………….…………27
3.3.2掃瞄式電子顯微鏡(SEM)……………...……29
3.3.3程式升溫還原(TPR)…………………….……30
3.3.4化學吸附測定銅表面積………………...……31
3.4觸媒反應裝置與反應步驟…………………..….…..32
3.4.1反應裝置…………………………….…………32
3.4.2反應條件…………………………….…………33
3.4.3反應步驟…………………………….…………33
3.4.4轉化率的計算………………………..……..…33
第四章 實驗結果與討論………………….…….………….35
4.1共含浸鉀之無電鍍銅系列觸媒……….…..………..35
4.1.1一氧化碳氧化反應……………………….……36
4.1.2程溫還原(TPR)………………………………....45
4.1.3金屬銅表面積測量(化學吸附分析)………..51
4.1.4 X-Ray繞射分析(XRD)………………………..59
4.1.5掃瞄式電子顯微鏡(SEM)…………………….63
4.2無電鍍銅觸媒與鉀物理混合之結果……………….69
4.2.1程溫還原(TPR)…………………………………69
4.2.2一氧化碳氧化反應…………………………….72
第五章 結論……………………………………………….85
參考文獻…………………………………………………….88
參 考 文 獻
Adler, S. F. and Keavney, J. J., ’The Physical Nature of
Supported Platinum’, J. Phys. Chem. 64, 208 (1960).
Agudo, A. L., Palacios, J. M. and Fierro, J. L. G., ‘Activity and
Structural Changes of Alumina-Supported CuO and
CuCr2O4 Catalysts during Carbon Monoxide in the
Presence of Water’, Appl. Catal. A: General, 91, 43 (1992).
Amenomiya, Y., and Cvetanric, R. J., ‘Application if Flash
Desorption Method to Catalyst Studies Ⅰ: Ethylene
Alumina System’, J. Phys. Chem. 67, 144 (1963).
Arai, H.,Yamada, T., Eguchi, K. and Seiyama, T., ‘High
Tempereature Combustion’, Appl. Catal., 26, 265(1986).
Barbier, J., Dumas, J. M., Geron, C. and Hadrane, H.
, ‘Copper as a Sacrifical Deposit on Noble Metallic
Catalysts’, Appl. Catal., 67, L1 (1990).
Barbier, J., Dumas, J. M., Geron, C. and Kribii, A.,
’Preparation of Supported Copper Catalysts II:
Reduction of Copper/Alumina Catalysts’, Appl. Catal.,
47, pL9 (1989).
Bijsterbosch, J. W., Kapteijn, F. and Moulijn, J. A., ‘In Situ FT-
IR Study of Copper-Chromium Oxide Catalysts in CO
Oxidation’, J. Mol. Catal., 74, 193 (1992).
Bond, G. C., Namijo, S. N., and Wakeman, J. S., ‘Thermal Analysis of Catalyst Precursors Part 2: Influence of
Support and Metal Precursor on the Reducibility of Copper Catalysts’, J. Mole. Catal., 64, 305 (1991).
Carolyn, C. E., Se, H. Oh., ’Effect of Addition on CO
Oxidation Kinetics over Alumina Supported Rhodium
Catalysts’, J. Catal., 112, 543 (1988).
Chang, H. F. and Saleque, M. A., ’Dependence of
Selectivity on the Preparation Method of Copper/
a-alumina Catalysts in the Dehydrogenation of
Cyclohexanol‘, Appl. Catal. A: General, 103, 233
(1994).
Chang, H. F. and Yung, C. F., ’Electroless-Plated Cu/Al2O3
Catalyst Prepared with Different Chelating Agents and Their Activity on the Dehydrogenation of 2-Butanol’,
Ind. Eng. Chem. Res., 6, 2080 (1997).
Chinchen, G. C., Hay, C. M., Vandervell, H. D., Waugh, K. C., ‘The Measurement of Copper Surface by Reactive Frontal Chromatography’, J. Catal., 103, 79 (1987).
Chuang, S. C, Krishnamurthy, R. and Kanchan G., ‘Carbon
Monoxide Adsorption and Hydrogenation on Cu-Rh/ SiO2
Catalysts’, Appl. Catal. A : General., 114, 109 (1994).
Chu, P. J., Gerstein, B. C., Sheffer, G. R. and King, T. S.
, ’NMR Studies of Cu and Cs in Alkali-Metal-Promoted Copper Catalysts‘, J. Catal., 115, 194 (1989).
Dekker, N. J., Hoorn, J., Stegenga, S., Kapteijn, F. and
Moulj, J. A., ’Kinetics of the CO oxidation by O2 and N2O over Cu-Cr /Al2O3’, AICHE. J., 38, 385 (1992).
Dow, W. P. and Huang, T. J., ’Effect of Oxygen Vacancy of Yttria-Stabilized Zirconia Support on Carbon
Monoxide over Copper Catalysts’, J. Catal., 147, 322 (1994).
Dumas, J. M., Gern, C., Hadrane, H., Marecot, P. and
Barbie, J., ’Modification of Rh/Al2O3 Catalysts by
Copper Deposition and Sulfur adsorption’, J.
Mol. Catal., 77, p87 (1992).
Evans, J. W., Wainwright, M. S., Bridgewater, A. J. and Young,
D. J., ‘On the Determination of Copper Surface Area by
Reaction with Nitrous Oxide’, Appl. Catal., 7, 75 (1983).
Friedman, R. M. and Freeman, J. J., ‘Characterization of
Cu/Al2O3 catalysts’, J. Catal., 55, 10 (1978).
Grift, V. D., Wielers, A. F. H., Joghi, B. P. J. and Beijnum, V.,
’Effect of the Reduction Treatment on the Structure and
Reactivity of Silica-Supported Copper Particles’, J. Catal.,
131, 178 (1991).
Grzybek, T., Klinik, J., Papp, H. and Baerns, M.,
’Characterization of Cu and K Containing Fe/Mn
Oxide Catalysts for Fischer-Tropsch Synthesis’, Chem. Eng. Technol., 13, 156 (1990).
Haouas, A., Nogier, J. Ph., Fraissard, J., ’On the Kinetic
Oxidation of Traces of CO on CuO-SnO2 Catalysts’, Catal. Today, 17, 1-2, 63 (1993).
Huang, T. J., ‘Effect of Calcination Condition on Surface
Properties of Copper/Alumina Catalysts’, J. of The Chin.
l. Ch. E., 21, No.5 (1990).
Huang, T. J., Yu, T. C., ‘Calcination Condition on Copper/
Alumina Catalysts for Carbon Monoxide Oxidation and
Nitric Oxide Reduction’, Appl. Catal., 71, 275 (1995).
Hung, A., ’Effects of Guanidine Hydrochloride on Electroless
Copper Deposition’, J. Electrochem. Soc., 133, 1350
(1986).
Hung, A., ‘Electroless Copper Deposition with Hypophosphite
as Reducing Agent’, Plating and surface finishing, 1, 62
(1988).
Hurst, N. W., Gentry, S. J. and Jones, A., ’Temperature
Programmed Reduction’, Catal. Rev. Sci. Eng., 24(2) , 233
(1982).
Imamura, S., Sawada, H., Uemura. K. and Ishida, S., ‘Oxidation
of Carbon Monoxide Catalyzed by Manganese-Silver
Composite Oxide’, J. Catal., 109, 198 (1988) .
Kang, Y.M., ’Effect of Acid or Base Additives on the Catalytic
Combustion Activity of Chromium and Cobalt Oxides’,
Appl. Catal. A: General, 114, 35 (1994).
Kapteijn, F., Stegenga, S., Dekker, N. J. J., Bijsterboasch, J. W.
and Moulijn, J. A., ‘Alternatives to Noble Metal Catalysts
for Automotive Exhaust Purification‘, Catal. Today, 16,
273 (1993).
Kobayashi, M., Kanno, T. and Kimura, T., ’Carbon
Monoxide Oxidation Kinetics on Zinc Oxide’, J.
Chem. Soc., Faraday Trans., 1, 84, 2099 (1989).
Kobayashi, M., Kanno, T., and Kimura, T., ’Surface Oxygen
Species Involved in the Oxidation of Carbon Monoxide over Chromium’, J. Chem. Soc., Faraday Trans., 1, 85, 579(1988).
Konda, K., Ishikawa, J., Takenaka, O., Matsubara, T.,
‘Accleration of Electroless Copper Deposition in the
Presence of Excess Triethanolamine’, J. Electrochem. Soc.,
138 , 3629(1991).
Krishnamurthy, R., Steven, S.C., ‘Carbon Monoxide
Adsorption and Hydrogenation Cu-Rh/SiO2 Catalysts’,
Appl. Catal. A: General, 114, 109 (1994).
Liao, P. C., Carberry, J. J., Fleisch, T. H. and Wolf, E. E.
‘CO Oxidation Activity and XPS Studies of Pt-Cu/
g-Al2O3 Bimetallic Catalysts‘, J. Catal., 97, 307 (1982).
Loof, P., Kasemo, B., Andersson, S., and Frestad, A., ‘Influence
of Ceria on the Interaction of CO and NO with Highly
Disperssed Pt and Rh’, J. Catal., 130, 181 (1991).
Lukes, R. M., ’The Chemistry of the Autocatalytic
Reduction of Copper by Alkaline Formaldehyde
plating’, Plating, 51, 1066 (1964).
Monti, D. A. M., and Baiker, A., ’Temperature-Programmed Reduction. Parametric Sensitivity and Estimation of
Kinetic Parameters’, J. Catal., 83, 323 (1988).
Malinowski, S., ’Modificayion of Acidity and Basicity of the
Surface of Oxide Catalyst’, Catalyst by Acids and Bases,
Stud. Surf. Sci. Catal., 57(1985).
Noronha, F. and Schmal, M., ‘Characterization of
Palladium-Copper Bimetallic Catalysts Supported on
Silica And Niobia‘, Appl. Catal., 78, 125 (1991).
Oh, S. H. and Eickel, C. C., ‘Effects of Cerium Addition on CO
Oxidation Kinetics Over Alumina-Supported Rhodium
Catalysts’, J. Catal., 112, 543 (1988).
Paunovic, M., ‘Electrochemical Aspects of Electroless Deposition
of Metals Plating‘, Plating, 55, 1161 (1968)
Prasad, R., Kennedy, L. A. and Ruckenstein, E., ‘Catalytic
Combustion’, Catal. Rev. Sci. Eng., 26(1), 1 (1984).
Prasad, Y. S., Padalia, B. D. and Raman, S. K., ’Role of
Chromia in Copper Catalysts for Dehydrogenation of
Ethanol’, J. Chem. Tech. Biotechnol., 35a, 15 (1985).
Praserthdam, P. and Majitnapakul, T., ‘Effect of Platinum
On Supported Copper Catalysts for Carbon Monoxide
Removel‘, Appl. Catal. A:General, 108, 21 (1994).
Robertson, S. D., Mcnicol, B. D., Debass, J. H., Kloet, S. C., and
Jenkins, J. W., ‘Determination of Reducibility and
Identification of Alloying in Copper-Nickel-on-Silica
Catalysts by Temperature-Programmed Reduction’, J.
Catal., 37, 424 (1975).
Robinson, W. R. A. N. and Mol, J. C., ’Characterization
and catalytic Activity of Copper/Alumina Methanol
Synthesis Catalysts‘, Appl. Catal., 44, 165 (1988).
Rossi, S. De., Ferraris, G., and Mancini, R., ’Comparison of
Carbon Monoxide and Nitrous Oxide Adsorption on
Copper/Zinc Oxide Oatalysts‘, Appl. Catal., 38, 359 (1988).
Saul, E. C., Mark, J. B., Rechard, G. C., ’Carbon Monoxide Hydrogenation Using Cobalt-Manganese Oxide
Catalyst s:Influence of Potassium as a Promoter’,
Applied Chemistry and Chemical Techonogy Centre,
186 (1991).
Schoenberg, L. N., ‘The Structure of the Complexed Copper
Species in Electroless Copper Plating Solutions’, J.
Electrochem. Soc., 118, 1571 (1971).
Severino, F., Brito, J. and Laine, J., ‘ Surface Copper
Enrichment by Reduction of Copper Chromite Catalyst
Employed for Carbon Monoxide Oxidation’, Catal. Let. 5,
45 (1990).
Severino, F. and Laine, J., ‘Changes in Alumina-Supported
Copper and Copper-Chromite Catalysts by the
Introduction of Water during Carbon Monoxide
Oxidation’, Appl. Catal., 65, 253 (1986).
Shangguan, W. F., Teraoka, Y., Kagawa, S., ’ Promotion Effect of
Potassium on the Catalytic Property of CuFe2O4 for the
Simultaneous Removal of NOx and Diesel Soot
Particulate’, Appl. Catal. B:Environmental, 16, 2, 149
(1998).
Sheffer, G. R., and King, T. S.,’Potassium’s Promotional
Effect Unsupported Copper Catalysts for Methanol
Synthesis‘, J. Catal., 115, 376 (1989).
Stegenga, S., Soest, R. V., Kapteijn, F. and Moulijn , J. A.,’Nitric
Oxide Reduction and Carbon Monoxide Oxidation over
Carbon Supported Copper-Chromium Catalysts’, Appl.
Catal. B: Environmental, 2, 257 (1993).
Strohmerier, B. R., Leyden, D. E., Scott , F. R., and Gercules
, D. M., ‘Surface Spectrossopic Characterization of Cu/
Al2O3 Catalysts‘, J. Catal., 94, 514 (1987).
Strohmeier, B. R, Leyden, D. E, Scott, F. R. and Hercules D.
M., ’Surface Spectroscopic Characterization of Cu/Al2O3
Catalysts‘, J. Catal., 94, 514 (1985).
Vicent, P., ’Catalytic Combustion of Disel Soot Particles on
Copper Catalysts Supported on TiO2.Effect of
Potassium Promoter on Activity’, Applied Catalyst B: Environmental, 3, 319 (1994).
Wang, H. P. and Yeh, C. T., ‘On the Reduction of Copper
Oxide’, J. Chinese Chem. Soc., 30, 139 (1983).
Yang, B. L., Chan, S. F., Chang, W. S. and Chen, Y. Z.,
’Surface Enrichment in Mixed Oxides of Cu、Co and Mn and Its Effect of CO Oxidation’, J. Catal., 130, 52 (1991).
Yao, Y. F., ’The Oxidation of CO and C2H4 Over Metal
Oxides’, J. Catal., 39, 140 (1975).
尹守治,「廢氣轉化用鉑/鈀雙金屬觸媒」, 碩士論文,大同工學
院 (1992)。
李元戎, 「修飾性無電鍍銅觸媒之製備與應用」,碩士論文,台灣
工業技術學院 (1997)。
李秋煌, 「添加劑對機車觸媒轉化器處理效率之影響」, 博士論文,國立中央大學(1996)。
張志清士, 「過渡金屬氧化物修飾氧化鋁擔體對鈷觸媒於一氧化碳氫化反應之影響」, 碩士論文,國立中央大學(1992)。
張新福、沙克雅伯,「化學銅觸媒應用於環己醇脫氫反應之究」,
化學,第52卷,第一期,中國化學學會,民國八十三年。
張新福、林文雄,「化學鍍銅之原理與應用」,化工,第40卷,
第5期,第10-18頁,民國八十二年。
張新福、黃銘川,「印刷電路板化學鍍銅液之研究」,逢甲學報,
第23期,第267-383頁,民國七十九年。
張俊雄,「應用在一氧化碳氧化之金-銅雙金屬觸媒」,碩士論文,
大同工學院 (1996)。
陳淑惠,「無電鍍鎳凸塊及鎳粉的無電鍍銅」,碩士論文,國立清
華大學 (1993)。
鄭秀玲, 「銅觸媒應用於環己醇脫氫反應之研究」,碩士論文,私
立逢甲大學 (1992)
簡金城,「鉑-鈀-氧化銅觸媒應用於機車廢氣處理之反應研
究」,碩士論文,國立清華大學 (1991)。
蕭志揚,「一氧化碳氧化之金鐵觸媒的改進與研究」,碩士論文,
國立台灣大學 (1994)。
胡恆達,「以氧化銅-鉑/ g-氧化鋁觸媒進行一氧化碳
氧化之反應動力」,碩士論文,國立清華大學 (1984)。
莊文博,「銅鉻雙金屬擔體觸媒對機車廢氣中一氧化碳與
碳氫化合物處理之研究」,碩士論文,國立清華大學 (1993)。
涂耀仁、陳郁文,「銅觸媒在醇類脫氫反應之應用」,觸媒與製
程,第二卷,第一期,第24頁,民國八十二年。
康義明,「催化燃燒反應之鉻鈷觸媒及金觸媒的製備與鑑定」,
博士論文,國立台灣大學 (1995)。
施經振,「含銅觸媒應用於NO-CO-O2反應之研究」,碩士論
文,國立清華大學 (1995)。
蔡志昌,「無電鍍銅觸媒特性與反應性之研究」,碩士論文,國立
台灣工業技術學院 (1994)。
劉子賢, 「銅鉻系列觸媒在甲醇分解反應之應用」,碩士論文,國
立台灣工業技術學院 (1996)。
陳宏宇, 「鉻及導氧離子添加對無電鍍銅觸媒在一氧化碳
反應之研究」,碩士論文,國立台灣科技大學(1999)。
吳宗哲, 「無電鍍銅觸媒在一氧化碳反應之研究」,碩士論
文,國立台灣科技大學(1999)。
環保署,全力推動機車二期排放標準,環境衛生報導,40(1992)。
交通部,交通統計月報,12月(1997)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top