跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 19:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘德文
研究生(外文):Pan, Te-Wen
論文名稱:非均勻傳輸線:分析、合成及設計
論文名稱(外文):Nonuniform Transmission Lines-Analysis, Synthesis and Design
指導教授:徐敬文
指導教授(外文):Hsue, Ching-Wen
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:157
中文關鍵詞:非均勻線重新組構逆散射任意波形任意濾波器時域反射儀傳輸線
外文關鍵詞:Nonuniform linesReconstructionInverse scatteringArbitrary waveformArbitrary filterTime-domain reflectometryTransmission lines
相關次數:
  • 被引用被引用:0
  • 點閱點閱:377
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
非均勻傳輸線已被研究並使用在微波工程中許多年。本論文的目的在研究非均勻傳輸線並擴展其應用。在本文中,我們討論了傳輸線在時域與頻域的散射及逆散射的問題。為了能順利分析,我們將非均勻傳輸線等效為片段均勻線的組合。利用這個等效模型,非均勻傳輸線在時域與頻域的散射即可求得。另一方面,對於逆散射的問題,我們則探討波在非均勻傳輸線的特性,並且因此提出了重新組構程序。此程序能由非均勻傳輸線的反射係數重新組構出非均勻傳輸線。此外,為了更詳細明瞭非均勻傳輸線的物理特性,我們推導出一組非均勻傳輸線的傳輸及反射公式。透過這些公式,傳輸線的傳輸及反射現象的關係即可被清楚的詮釋。而這些公式,再加上數位信號處理及重新組構的技術,即可由一給定的傳輸及反射係數實現出一非均勻傳輸線。我們綜合這些技術,提出一個展新的非均勻傳輸線設計方法,並且舉例展示了這方法確實可以應用在實際的微波電路中。
Nonuniform transmission lines (NTLs) have been studied and used in microwave engineering for several decades. The purpose of this thesis is to study NTLs and extend their applications. In this thesis, both direct and inverse scattering problems of NTLs are investigated in both frequency and time domains. For analyzing NTLs successfully, NTLs are modeled as cascaded multi-section uniform lines. The scattering parameters of NTLs can be obtained in both time and frequency domains by taking advantage of the model. To study inverse scattering of NTLs, the wave propagation characteristics inside the lines are examined. By taking into account the progressive behavior of wave propagation, an inverse process, called reconstruction method, is developed to reconstruct the physical structure of an NTL from its time-domain or frequency-domain reflection parameter. In addition, to elaborate the physical insights of NTLs, the formulations of the transmission and reflection coefficients of the lines are derived in Z domain. The reflection and transmission coefficients of an NTL are expressed as polynomial ratio in Z transforms. Such formulations reveal explicit relationship between transmission coefficient and reflection coefficient of an NTL. These formulations, in conjunction with DSP technique and reconstruction method, lead to the realization of NTLs from either the reflection or transmission coefficients. A novel scheme for NTLs design is proposed by combining with the above techniques. Several examples are presented to illustrate the applications of these novel techniques in practical circuits.
封面
CONTENTS
中文摘要
英文摘要
誌謝
LIST OF FIGURES
1 INTRODUCTON
1.1 Historical Background
1.2 Solution Techniques
1.3 Principal Derivations and Results
1.4 Outline of Subsequent Chapters
2 DIRECT SCATTERING OF NONUNIFORM TRANSMISSION LINES
2.1 Introduction
2.2 Model of Nouniform Trasmission Lines
2.3 Frequency-Domain Aanalysis
2.3.1 Input Impedance of an NTL
2.3.2 ABCD Transmission Matrix
2.3.3 Linear Varied NTL Approach
2.4 NTLs in the Time Domain
2.5 Analyzing NTLs in the Z domain
2.6 Discussion
3 THE FORMS OF SCATTERING COEFFICIENTS OFNONUNIFORM TRANSMISSION LINES
3.1 Introduction
3.2 Formulations of Reflection and Transmission Coefficients
3.3 Relationship between Refleion and Transmission Coefficaients
3.3.1 Obtatining Transmission Coefficent from Reflection Coefficiet
3.3.2 Obtaining Reflection Coefficient From Transmission Coefficien
3.4 The Physical Concept of the Formulations
3.4.1 Formulations in the Frequency Domain
3.4.2 Formulations in the Time Domain
3.5 Discussion
4 INVERSE SCATTERING OF NONUNIFORM TRANSMISSION LINES
4.1 Introduction
4.2 Wavefront and Nonwavefront
4.3 Process of Inverse Scattering
4.4 Examples
4.4.1 Numerical examples
4.4.2 Experimental Examples
4.5 Reconstruction Technique of a Convetional Time-Domain
Reflectometry
4.6 Discussion
5 DESIGN OF NONUIFORMJ TRANSMISSION LINES
5.1 Introduction
5.2 Desugb ryke fir Nibynufirn Transmission Lines
5.2.1 The Specification of Desired Properties of NTL
5.2.2 DSP Aapproach
5.2.3 Reflection Coefficient
5.2.4 Reconstruction
5.2.5 Implementation
5.3 Arbitray Filter Design
5.4 Arbitrary Filter Design
5.4.1 Low-Pass Filter Design
5.4.2 Arbitrary Filter Design
5.5 High-Speed Infinite Impulse Response(IIR)Circuit
5.6 Discussion
6 CONLUSION
APPENDIX
A. The Locations of Poles and Zeros for the General Formulations of Transmission and Reflection
B. The Number of Multi-reflection Paths in an NTL
BIBLIOGRAPHY
PUBLICATIONS
About Authos
授權書
[1] L. R. Walker and N. Wax, “Non-uniform transmission lines and reflection coefficients,” J. Appl. Phys., vol. 17, pp. 1043-1045, Dec. 1946.
[2] Bolinder, F., “Fourier transforms in the theory of inhomogeneous transmission lines,” Proc. IRE, vol.38, p.1354, Nov. 1950.
[3] Collin, R. E., “Theory and design of wide band multisection quarter-wave transformers,” Proc. IRE, vol. 43, pp. 179-185, Feb. 1955.
[4] H. Kaufman, “Bibliography of nonuniform transmission lines,” IRE Trans. Antennas and Propagation, vol. AP-3, pp.218-220, Oct. 1955.
[5] S.I Orlov, “Concerning the theory of nonuniform transmission lines,” J. Tech. Phys. USSR, vol. 26, p. 2361, 1956; (Transl. By American Physical Society Sov. Phys.─Tech. Phys., vol. 1 pp. 2284-2294, 1957).
[6] R. W. Klopfenstein, “A transmission line taper of improved design,” Proc. IRE, 44, pp.31-35, Jan. 1956.
[7] R. E. Collin, “ The optimum tapered transmission line matching section,” Proc. IRE, vol. 44, pp.539-548, April 1956.
[8] Matsumaru, K., “Reflection coefficient of E-Plane tapered waveguides,” IRE Trans., vol. MTT-6, pp. 143-149, April 1958.
[9] Young, L., “Tables for cascaded homogeneous quarter-wave transformers,” IRE Trans., vol. MTT-7, pp.233-237, April 1959. See also IRE Trans., vol. MTT-8, pp. 243-244, for corrections.
[10] Johnson, R. C., “Design of linear double tapered in rectangular waveguides,” IRE Trans., vol. MTT-7, pp. 374-378, July 1959.
[11] C. P. Womack, “The use of exponential transmission line in microwave components,” IRE Trans. vol. MTT-10, pp. 124-132, March 1962.
[12] G. N. Tsandoulous, “The linearly tapered transmission line as a matching section─High and low frequency behavior,” Proc. IEEE, vol. 55, pp. 1658-1659, 1967.
[13] M. A. Grossberg, “Extremely rapid computation of the Klopfenstein impedance taper,” Proc. IEEE, vol.56, pp. 1629-1630, Sept. 1968.
[14] O. P. Rustogi, “Linearly tapered transmission line and its applications in microwave,” IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp. 166-168, Mar. 1969.
[15] P. I. Somlo and D.L. Hollway, “Microwave locating reflectometer,” Elctron. Lett., vol. 5, pp.468-469, Oct. 1969.
[16] J. Detlefsen, “Frequency response of input impedance implies the distribution of discontinuities of a transmission line system,” Electron. Lett., vol.6, pp.67-69, Feb. 1970.
[17] R. P. Hecken, “A near-optimum matching section without discontinuities,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, No. 11, pp.734-739, Nov. 1972.
[18] N. S. Rau and W. Janischewskyj, “A numerical method for the calculation of transients in linear and nonlinear transmission lines,” IEEE Trans. Power App. Syst., vol. 91, pp. 2545-2553, 1972.
[19] K. D. Marx, “Propagation modes, equivalent circuits, and characteristic terminations for multiconductors transmission line with inhomogeneous dielectrics,” IEEE Trans. Microwave Theory Tech., vol. 21, pp.450-457, July 1973.
[20] D. P. Carroll and F. Nozari, “An efficient computer method for simulating transients on transmission lines with frequency dependent parameters,” IEEE Trans. Power App. Syst., vol.94, pp. 1167-1176, 1975.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文