跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 08:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹健民
研究生(外文):Chien-Min Chan
論文名稱:多重協定標籤交換網路上匯集整合服務資料流之研究
論文名稱(外文):IntServ Flows Aggregation in MPLS Networks
指導教授:陳金蓮陳金蓮引用關係
指導教授(外文):Jean-Lien C. Wu
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:48
中文關鍵詞:整合服務多重協定標籤交換服務品質輪換優先權佇列資料流匯集
外文關鍵詞:Integrated Service (IntServ)Multiprotocol Label Switching (MPLS)Quality of Service (QoS)Rotating Priority Queue+ (RPQ+)Flow Aggregation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
寬頻 (broadband) 與保障服務品質 (Quality of Service, QoS) 已成為網路發展的兩股重要趨勢,多重協定標籤交換 (Multiprotocol Label Switching, MPLS) 技術近年來發展相當迅速,它不僅可增加現有網際網路上封包的傳輸速度,更具有利於發展訊務工程 (traffic engineering) 的優點。網際網路所提供之整合服務 (Integrated Service, IntServ) 可讓使用者依其要求的服務品質順暢地傳輸具時間敏感性的資訊,而達成服務品質保障的目的。
本論文旨在研究多重協定標籤交換與整合服務的結合,透過標籤交換路由器 (Label Switching Router, LSR) 聚集資料流,並針對此整合服務資料流預留適當資源,在網際網路上有效率地保障服務品質。透過聚集整合服務資料流同時可解決整合服務不適用於較大型網路之擴充性 (scalability) 的問題。控制負載型服務 (controlled-load service) 與保證型服務 (guaranteed service) 為整合服務的兩種服務型態,針對此兩種服務的特性,我們用不同的策略來服務此聚集後的資料流。針對聚集後之控制負載型服務資料流,我們使用簡單的先到先服務 (First Come First Serve, FCFS) 的排程機制,而針對聚集後之保證服務資料流,則採改良式的輪換優先權佇列 (Rotating Priority Queue +, RPQ+) 做為排程的方法。
我們參照美國的very High Speed Backbone Network Service (vBNS) 與臺灣的學術網路 (Taiwan Academic Network, TANet) 做為模擬用之兩種網路架構。模擬的結果顯示,由於資料流的聚集,在相同的頻寬下可以容納更多的服務,同時也解決了整合服務的擴充性問題。
It is commonly believed that Integrated Service (IntServ) is not scalable to large networks. In this thesis, we study the association of Multiprotocol Label Switching (MPLS) and IntServ to try to overcome the scalability problem. The goal is to provide Quality of Service (QoS) in an efficient and scalable manner in the Internet through enable Label Switching Routers (LSRs) to be able to identify the appropriate reservation state for the aggregated IntServ flows based on the corresponding label. IntServ data flows are aggregated and mapped to one data flow in the MPLS network. IntServ data flows belong to the same Forwarding Equivalence Class (FEC) are aggregated.
The proposed scheme of integration of IntServ and MPLS is efficient and scalable. Efficiency implies that when flow aggregation is employed, one can use less resource to achieve the same required QoS, and less time is spent in transmitting packets. Scalability means that the aggregation of IntServ flows makes IntServ works well even when the volume of the data flow becomes huge. Controlled-load service and guaranteed service are two service types of IntServ. According to the different characteristic of these two services, First Come First Serve (FCFS) and the Rotating Priority Queue+ (RPQ+) packet scheduling are employed for aggregated controlled-load and guaranteed-service flows, respectively.
The Taiwan Academic Network (TANet) and very High Speed Backbone Network Service (vBNS) are used as our simulation environments. Simulation results show that because of flow aggregation, more flows could be served meanwhile the scalability problem of IntServ is also mitigated.
Chapter 1 Introduction 1
1.1 Current IP level QoS Solutions: IntServ and DiffServ 2
1.2 Motivation and Goal 8
Chapter 2 Supporting IntServ in the MPLS Network 11
2.1 Multiprotocol Label Switching 11
2.2 Network Architecture 16
2.3 Procedures of Supporting IntServ in MPLS Networks 18
2.4 Flow Aggregation 20
Chapter 3 Packet Scheduling and Resource Management 23
3.1 Packet Scheduling for Controlled-Load Service 23
3.2 Resources Management for Controlled-Load Service 24
3.3 Packet Scheduling for Guaranteed Service 30
3.4 Resource Management for Guaranteed Service 32
Chapter 4 Simulation Results 39
4.1 Simulation Environment 39
4.2 Simulation Results 41
Chapter 5 Conclusion 45
References 47
[1] R. Braden, D.Clark, and S. Shenker, “Integrated Services in the Internet Architecture: an Overview,” RFC 1633, June 1994.
[2] E.Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching Architecture,” Internet draft, draft-ietf-mpls-arch-06.txt, Aug. 1999.
[3] R. Callon, P. Doolan, N. Feldman, A. Fredette, G. Swallow, and A. Viswanathan, “A Framework for Multiprotocol Label Switching,” draft-ietf-mpls-framework-05.txt, Sept. 1999.
[4] G. R. Ash, O. S. Aboul-Magd, B. Jamoussi, and Y. Lee, “QoS Resource Management in MPLS-Based Networks,” Internet Draft, draft-ash-qos-routing-00.txt, Feb. 1999.
[5] J. Wroclawski, “The Use of RSVP with IETF Integrated Services.” RFC 2210, Sept. 1997.
[6] S. Shenker, and J. Wroclawski, “General Characterization Parameters for Integrated Service Network Elements,” RFC 2215, Sept. 1997.
[7] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An Architecture for Differentiated Services,” RFC 2475, Dec. 1998.
[8] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers,” RFC 2474, Dec. 1998.
[9] X. Xiao, and L. M. Ni, “Internet QoS: A Big Picture,” IEEE Network, March/April 1999, pp. 8-18.
[10] P. Ferguson and G. Huston, “Quality of Service: Delivering QoS on the Internet and in Corporate Networks,” Wiley Computer Publishing, 1998.
[11] J. Wroclawski, “Specification of the Controlled-Load Network Element Service,” RFC 2211, Sept. 1997.
[12] S. Shenker, C. Partridge, and R. Guerin, “Specification of Guaranteed Quality of Service,” RFC 2212, Sept. 1997.
[13] R. Braden et al., “Resource Reservation Protocol (RSVP) — Version 1 Functional Specification,” RFC 2205, Sept. 1997.
[14] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured Forwarding PHB Group,” draft-ietf-diffserv-af-06.txt, Feb. 1999.
[15] V. Jacobson, K. Nichols, and K. Poduri, “An Expedited Forwarding PHB,” draft-ietf-diffserv-phb-ef-02.txt, Feb. 1999.
[16] K. Nagami, H. Esaki, Y. Katsube, and O. Nakamure, “Flow Aggregated, Traffic Driven Label Mapping in Label-Switching Networks,” IEEE J. Select. Areas Commun., vol. 17, no. 6, June 1999, pp. 1170-1177.
[17] L. Guo, and I. Matta, “On State Aggregation for Scalable QoS Routing,” ATM Workshop Proceedings, 1998, pp. 306-314.
[18] J. Schmitt, M. Karsten, L. Wolf, and R. Steinmetz, “Aggregation of Guananteed Service Flows,” Proc. IWQoS ’99, pp. 147-155.
[19] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow control in integrated services networks: The single node case,” IEEE/ACM Trans. Networking, vol. 1, June 1993, pp. 344-357.
[20] J. Liebeherr, and D. E. Wrege, “Priority Queue Schedulers with Approximate Sorting in Output-Buffered Switches,” IEEE J. Select. Areas Commun., vol. 17, no. 6, June 1999, pp. 1127-1144.
[21] J. A. Fingerhut and G. Varghese, “Randomized Token Buckets: Reducing the Buffers Required in Multiplexors,” Proc. IEEE 7th International Workshop on Network and Operation System Support for Digital Audio and Video, 1997, pp. 215-219.
[22] P. P. Tang and T. Y. C. Tai, “Network Traffic Characterization Using Token Bucket Model,” Proc. IEEE INFCOM’99, New York, NY, USA, Mar. 1999, pp. 51-62.
[23] D. C. Lee, “Effects of Leaky Bucket Parameters on the Average Queueing Delay: Worst Case Analysis,” Proc. IEEE INFCOM’94, Toronto, Ontario, Canada, June 1994, vol. 2, pp.482-489.
[24] M. Butto, E. Cavallero, and A. Tonietti, “Effectiveness of the “Leaky Bucket” Policing Mechanism in ATM Networks,” IEEE J. Select. Areas Commun., vol. 9, no. 3, April 1991, pp. 335-342.
[25] G. Armitage, “MPLS: The Magic Behind the Myths,” IEEE Commun. Mag., Jan. 2000, pp. 124-131.
[26] L. Andersson, P. Doolan, N. Feldman, A. Fredette, and B. Thomas, “LDP Specification,” Internet draft, draft-ietf-mpls-ldp-06.txt, Oct. 1999.
[27] D. O. Awduche, L. Berger, D. H. Gan, T. Li, G. Swallow, and V. Srinivasan, “Extensions to RSVP for LSP Tunnels,” draft-ietf-mpls-rsvp-tunnel-05.txt, Feb. 2000.
[28] D. O. Awduche, “MPLS and Traffic Engineering in IP Networks,” IEEE Commun. Mag., Dec. 1999, pp. 42-47.
[29] G. Swallow, “MPLS Advantages for Traffic Engineering,” IEEE Commun. Mag., Dec. 1999, pp. 54-57.
[30] Y. Wang and Z. Wang, “Explicit Routing Algorithms for Internet Traffic Engineering,” Proc. ICCCN’99, 1999, pp.582-588.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊