跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 12:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許鉅駿
研究生(外文):Ju-Jiun Shiu
論文名稱:在GSM/GPRS環境下無線資源分配之研究
論文名稱(外文):The Study of Radio Resource Allocations in GSM/GPRS Environment
指導教授:陳金蓮陳金蓮引用關係
指導教授(外文):Jean-Lien C. Wu
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:55
中文關鍵詞:GPRSGSM允入控制頻寬分配服務品質
外文關鍵詞:GPRSGSMcall admissionbandwidth allocationQoS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:393
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
GPRS (General Packet Radio Service)是在全球行動通訊系統(Global System for Mobile Communication; GSM)架構下所提供的一種新的數據通訊服務,它能大幅改進並簡化經由無線對於網際網路的存取方式。GPRS有效的將分封式無線(Packet Radio)的原則應用在行動台(Mobile Station)與分封資料網路(Packet Data Network)的資料傳輸當中。GPRS與GSM的語音服務共享細胞(cell)中的無線資源。對於分封交換(GPRS)與電路交換(傳統GSM)兩者間的實體頻道配置,主要是依據網路交通的負載及服務的等級來動態的配置。
在本篇論文中,我們討論在傳統GSM服務與GPRS間無線資源分配的問題。透過通話允入控制器(call admission controller)與頻寬分配控制器(bandwidth allocation controller) 可得到較佳的頻寬利用率,並且不影響傳統GSM服務及GPRS的服務品質(QoS)。我們使用固定保護頻道策略(static guard channel scheme)來給予GSM語音交遞呼叫(voice handoff calls)較高之優先權。此策略有降低頻寬利用率(bandwidth utilization)的缺點,因此我們討論暫時將這些保護頻道配置給GPRS使用者來改善這個問題。當語音的訊務量較低時,本策略之模擬結果顯示可獲得較低的新呼叫阻塞率(blocking probability)、交遞呼叫阻塞率和頻寬利用率並且不會提高GPRS連線拒絕率(connection rejection rate) 。當語音的訊務量較高時,本篇論文所提出的策略能將新呼叫阻塞率保持在目標值之下。
The General Packet Radio Service (GPRS) is a new bearer service for GSM (Global System for Mobile Communications) that can greatly improve and simplify wireless access to the Internet. In the GPRS, the packet radio principle is applied to transfer user data packets in an efficient way between mobile stations (MSs) and packet data networks. The radio resources of a cell are shared by both the GPRS and GSM voice service. The allocation of physical channels to either packet-switched (GPRS) or circuit-switched (conventional GSM) services can be performed dynamically, depending on the traffic load and the service priority.
In this thesis, we will study the design of radio resources allocation between conventional GSM services and GPRS. The call admission controller and bandwidth allocation controller are employed to obtain good bandwidth utilization without affecting the QoS of conventional GSM services and GPRS. Static guard channels are used to prioritize GSM voice handoff calls. The static guard channel scheme has the drawback of low bandwidth utilization. Temporary allocation of these guard channels to GPRS users is discussed to solve this problem.
Compared with the channel allocation model without call admission controller and bandwidth allocation controller, our simulation results show that in low voice traffic load case, the proposed scheme can achieve lower voice call blocking probability, new and handoff, and better channel utilization whereas does not increase GPRS connection rejection rate when the GPRS connection requests is low. When voice traffic load is high, the new call blocking probability can still be kept below the target value.
Chapter 1. Introduction 1
1.1 Overview of GPRS 1
1.2 Handoff priority-based Channel Allocation Schemes 2
1.3 Motivation and Goal 3
Chapter 2. General Packet Radio Services 5
2.1 General GSM Concept 5
2.2 GPRS system architecture 7
2.3 Session Management and Routing 10
2.4 Protocol Architecture 13
2.5 Quality of Services 16
Chapter 3. Radio Resource Allocations 18
3.1 Air Interface 18
3.2 The Proposed Radio Resource Allocation Scheme 26
Chapter 4. Simulation Results 35
4.1 Simulation Model and Assumptions 35
4.2 Simulation Results 36
Chapter 5. Conclusions 51
References 53
[1]M. Mouly and M. B. Paute, “Current Evolution of the GSM Systems,” IEEE Pers. Commun., vol. 2, no. 5, pp. 9-19, Oct. 1995.
[2]ETSI, “GSM 03.60 General packet radio service (GPRS) : Service description, Stage 2,” v. 5.2.0, Jan. 1998.
[3]ETSI, “GSM 03.64 General packet radio service (GPRS) : Overall description of the GPRS radio interface, Stage 2,” v. 7.0.0, July 1999.
[4]Brasche and B. Walke, “Concepts, services, and protocols of the new GSM phase 2+ general packet radio service,” IEEE Commun. Mag. ,vol. 35, no. 8, pp. 94-104, Aug. 1997.
[5]J. Cai and D. Goodman, “General packet radio service in GSM,” IEEE Commun. Mag. , vol. 35, no. 10, pp. 122-131, Oct. 1997.
[6]C. Bettstetter, H. J. Vogel and J. Eberspacher, “GSM Phase 2+ General Packet Radio Service GPRS: Architecture, Protocols, and Air interface,” IEEE Commun. Surveys, vol. 2, no. 3, Third Quarter 1999.
[7]R. Kalden, I. Meirick and M. Meyer, “Wireless Internet access based on GPRS,” IEEE Pers. Commun., vol. 7, no. 2, pp. 8-18, April 2000.
[8]C. Ferrer and M. Oliver, “Overview and capacity of the GPRS (General Packet Radio Service),” IEEE PIMRC’98, vol. 1, pp. 106-110, Boston,USA, Sep. 1998.
[9]J. Sau and C. Scholefield, “Scheduling and quality of service in the general packet radio service,” IEEE ICUPC’98, vol. 2, pp. 1067-71, Florence, Italy, Oct. 1998.
[10]C. Johansson, L. Verdier and F. Khan, “Performance of different scheduling strategies in a packet radio system,” Proceedings IEEE ICUPC’98, vol. 1, pp. 267-271, Florence, Italy, Oct. 1998.
[11]R. Ludwig and D. Turina, “Link layer analysis of the general packet radio service for GSM,” Proceedings IEEE ICUPC’97, vol. 2, pp. 525-30, San Diego, USA, Oct. 1997.
[12]G. Brasche and B. Walke, “Analysis of multi-slot MAC protocols proposed for the GSM phase 2+ general packet radio service,” Proceedings IEEE VTC’97, vol. 2, pp. 1295-1300, Phoenix, USA, May 1997.
[13]D. Turina, “Performance evaluation of a single-slot packet data channel in GSM,” Proceedings IEEE VTC’95, vol. 2, pp. 544-48, Chicago, USA, July 1995.
[14]D. Turina, P. Beming, E. Schoster and A. Andersson, “A proposal for multi-slot MAC layer operation for packet data channel in GSM,” Proceedings IEEE ICUPC’96, vol. 2, pp. 572-76, Cambridge, USA, Sep. 1996.
[15]G. Brasche, “Evaluation of a MAC protocol proposed for a general packet radio service in GSM”, Proceedings IEEE PIMRC’96, vol. 2, pp. 668-72, Taipei, Taiwan, Oct. 1996.
[16]S. Ni and S. G. Haggman, “GPRS performance estimation in GSM circuit switched services and GPRS shared resource systems,” Proceedings IEEE WCNC’99, vol. 3, pp. 1417-21, New Orleans, USA, Sep. 1999.
[17]D. Hong and S. S. Rappaport, “Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and no-protection handoff procedure,” IEEE Trans. Veh. Technol., vol. 35, no. 3, pp. 77-92, Aug. 1986.
[18]C. H. Yoon and K. Un, “Performance of personal portable radio telephone systems with and without guard channels,” IEEE J. Select. Areas Common., vol. 11, no. 6, pp. 911-917, Aug. 1993.
[19]Y. B. Lin, S. Mohan, and A. Noerpel, “Queueing priority channel assignment strategies for handoff and initial access for a PCS network,” IEEE Trans. Veh. Technol., vol. 43, no. 3, pp. 704-712, Aug. 1994.
[20]S. Tekinary and B. Jabbari, “Handover and channel assignment in mobile cellular networks,” IEEE Commun. Mag. , vol. 29, no. 11, pp. 42-46, Nov. 1991.
[21]S. Tekinary and B. Jabbari, ”A measurement based prioritization scheme for handovers in mobile cellular networks,” IEEE J. Select. Areas Common., vol. 10, no. 8, pp. 1343-1350, Oct. 1992.
[22]Y. B. Lin, A. R. Noerpel and D. J. Harasty, “The sub-rating channel assignment strategy for PCS hand-offs,” IEEE Trans. Veh. Technol., vol. 45, no. 1, pp. 122-30, Feb. 1996.
[23]M. D. Kulavaratharasah and A. H. Aghvami, “Teletraffic performance evaluation of microcellular personal communication networks (PCN’s) with prioritized handoff procedures,” IEEE Trans. Veh. Technol., vol. 48, no. 1, pp. 137-152, Jan. 1999.
[24]ETSI, “GSM 03.02, Network architecture”, v. 7.1.0, Feb. 2000.
[25]ETSI, “GSM 04.60 General packet radio service (GPRS): MS-BSS interface, Radio Link Control/Medium Access Control (RLC/MAC) protocol”, v. 7.2.0, Feb. 2000.
[26]ETSI, “GSM 02.60 General packet radio service (GPRS): Service description, Stage 1”, v. 5.2.0, Jan. 1998
[27]G. C. Chen and S. Y. Lee, “Modeling the static and dynamic guard channel schemes for mobile transactions,” International Conference on Parallel and Distributed Computing and Systems, pp. 258-65, Las Vegas, Nevada, Oct. 1998.
[28]D. Reininger, R. Izmailov, B. Rajagopalan, M. Ott and D. Raychaudhuri, “Soft QoS control in the WATMnet broadband wireless system,” IEEE Pers. Commun., vol. 6, no.1, pp. 34-43, Feb. 1999.
[29]A. Iera, A. Modafferi and A. Molinaro, “Supporting multimedia with soft-QoS guarantee in wireless communication systems,” Proceedings IEEE GLOBECOM’99, vol. 1A, pp. 69-73, Rio de Janeiro, Brazil, Dec. 1999.
[30]T. W. Yu and C. M. Leung, “Adaptive resource allocation for prioritized call admission over an ATM-based wireless PCN,” IEEE J. Select. Areas Common., vol. 15, no. 7, pp. 1208-1225, July 1997.
[31]MIL3, OPNET Modeling Concepts vol. 1, USA, 1999
[32]MIL3, OPNET Modeling Concepts vol. 2, USA, 1999
[33]MIL3, OPNET Simulation Kernal / Prg-Vvec, USA, 1999
[34]MIL3, OPNET Simulation Kernal / Anim-Pk, USA, 1999
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊