跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 08:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅永昌
研究生(外文):Yung-Chang Luo
論文名稱:適應性定子電阻估測與轉矩漣波最小化之無量測器直接轉矩控制感應馬達驅動器
論文名稱(外文):Adaptive Stator Resistance Estimation and Torque Ripple Minimization for a Sensorless Direct Torque Controlled Induction Motor Drive
指導教授:劉昌煥劉昌煥引用關係
指導教授(外文):Chang-Huan Liu
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:133
中文關鍵詞:直接轉矩控制定子電阻估測轉矩漣波最小化參考模式適應控制
外文關鍵詞:direct torque controlstator resistance estimationtorque ripple minimizationmodel reference adaptive control
相關次數:
  • 被引用被引用:20
  • 點閱點閱:501
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在探討無量測器直接轉矩控制感應馬達驅動器的定子電阻參數辨識與轉矩漣波最小化問題,首先探討直接轉矩控制的各種變頻器切換式樣,接著介紹直接轉矩控制的原理並建立無量測器直接轉矩控制感應馬達驅動器的架構。進而提出以觀測有效功率為基礎的MRAS定子電阻辨識架構,來線上估測馬達定子電阻,以消除因溫升造成馬達定子電阻變動,造成控制器的定子電阻設定值無法與馬達定子電阻匹配,而影響到系統的穩定度問題。再者,切換表式直接轉矩控制架構因使用轉矩與定子磁通遲滯型控制器關係,會造成轉矩漣波問題,尤其以低速運轉時更是嚴重,因此,本文提出一個用以選擇非零電壓向量與零電壓向量切換瞬間的轉矩漣波最小化控制方法。經由模擬與實驗結果印證本文所提出結合定子電阻估測與轉矩漣波最小化的技術,可有效的改善無量測器直接轉矩控制驅動器的運轉性能。
A sensorless direct torque controlled induction motor drive with stator resistance identification and torque ripple minimization is presented in this thesis. First, A model reference adaptive system (MRAS) based scheme is used to identify stator resistance on-line. It is shown in the thesis that the proposed adaptive stator resistance strategy can effectively stabilize the direct torque control induction motor drive, when the set value of the stator resistance in the controllers is higher than that of the motor. Next, a torque ripple minimization scheme is proposed which selects the switching instants of the nonzero and zero voltage vectors in each sampling period in a predictive way. Both the simulation and experimental results show that the combined stator resistance estimation and torque ripple minimization techniques can effectively reduce the torque ripple at low speed down to 20 r/min under loading condition.
第一章 緒論 1
1.1 研究動機 1
1.2 研究背景與目的 4
1.3 內容大綱 5
第二章 直接轉矩控制的變頻器切換式樣 6
2.1 切換表操作方式 6
2.2 直接自我控制(DSC)操作方式 16
2.3 電壓空間向量調變的操作方式 19
第三章 無量測器直接轉矩控制感應馬達驅動器 30
3.1 轉矩與磁通計算法則 30
3.2 感應馬達直接轉矩控制的速度估測 32
3.3 感應馬達之電壓空間向量式直接轉矩控制 34
3.4 直接轉矩控制感應馬達驅動器的模擬 37
3.4.1 切換表式直接轉矩控制感應驅動系統模擬 37
3.4.2 空間向量調變式直接轉矩控制系統模擬 44
第四章 直接轉矩控制之馬達參數線上調適 51
4.1 MRAS定子電阻辨識的原理 55
4.2 MRAS定子電阻辨識的穩定性分析 57
4.2.1 轉換MRAS估測系統為等效非線性時變回授系統 57
4.2.2 證明線性非時變前向子系統的轉移函數矩陣為嚴
格正實數矩陣 60
4.2.3 求能滿足Popov’s積分不等式之非線性時變回授
子系統的調適機構 62
4.2.4 MRAS辨識架構的穩定性 63
4.3 由轉子磁通觀測器以MRAS來辨識定子電阻 65
4.4 具有MRAS定子電阻估測之無量測器DTC系統的模擬 68
4.4.1 定子電阻變動對直接轉矩控制系統的影響 69
4.4.2 以有效功率為基礎的MRAS定子電阻辨識DTC
系統模擬 73
4.4.3 以電抗功率為基礎的MRAS定子電阻辨識DTC
系統模擬 77
第五章 直接轉矩控制之轉矩漣波最小化 82
5.1 減少轉矩漣波的方法 82
5.2 轉矩漣波最小化原理 84
5.3 具有轉矩漣波最小化直接轉矩控制系統的模擬 88
第六章 具有定子電阻調適與轉矩漣波最小化之無量測器直接
轉矩控制感應馬達驅動器的實現 96
6.1 實驗系統介紹 96
6.1.1 PC-based 控制板 96
6.1.2 功率級板 102
6.2 模擬與實驗結果 104
6.2.1 DTC控制迴路的定子電阻設定值不匹配時所引起
不穩定度的模擬 104
6.2.2 適應性DTC對轉矩漣波最小化的模擬 105
6.2.3 具有適應性DTC對轉速命令四象限操作的模擬與
實驗 105
6.2.4 適應性DTC在低轉速的實驗 106
第七章 結論與建議 112
7.1 結論 112
7.2 建議與後續研究方向 113
參考文獻 115
作者簡介 131
參考文獻
[1] Blaschke, F., “The Principle of Field Orientation Applies to The New Transvector Closed-loop Control System for Rotating Field Machines,” Siemens Review, vol. 39, no. 5, pp. 217-220, 1972.
[2] Takahashi, I., and T. Noguchi, “A new quick-response and high-efficiency control strategy of an induction motor,” IEEE Trans. Ind. Appl., vol. 22, no. 5, pp. 820-827, Sep./Oct. 1986.
[3] Takahashi, I., and Y. Ohmori, “High-performance direct torque control of an induction motor,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 257-264, Mar./Apr. 1989.
[4] Depenbrock, M., “Direct self-control (DSC) of inverter-fed induction machine,” IEEE Trans. Power Electron., vol. 3, no. 4, pp. 420-429, Oct. 1988.
[5] Baader, U., M. Depenbrock, and G. Gierse, “Direct self control (DSC) of inverter-fed induction machine: a basis for speed control without speed measurement,” IEEE Trans. Ind. Appl., vol. 28, no. 3, pp. 581-588, May/June 1992.
[6] Habetler, T. G., F. Profumo, M. Pastorelli, and L. M. Tolbert, “Direct torque control of induction machines using space vector modulation,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1045-1053, Sept./Oct. 1992.
[7] Casadei, D., G. Grandi, G. Serra, and A. Tani, “Effects of flux and torque hysteresis band amplitude in direct torque control of induction machines,” in Proc. IEEE Int. Conf. Ind. Electron., Contr., and Instrument.,vol. 1, pp. 299-304, 1994.
[8] Walczyna, A. M., “Problems of application of direct flux and torque control methods to high power vsi-fed drives operating at low speed,” in Proc. IEEE Int. Conf. Ind. Electron., Contr., and Instrument.,vol. 1, pp. 293-298, 1994.
[9] Zhong, H. Y., H. P. Messinger, and M. H. Rashad, “A new microcomputer-based direct torque control system for three-phase induction motor,” IEEE Trans. Ind. Appl., vol. 27, no. 2, pp. 294-298, Mar./Apr. 1991.
[10] Mir, S., M. E. Elbuluk, and D. S. Zinger, “PI and fuzzy estimators for tuning the stator resistance in direct torque control of induction machines,” in Proc. IEEE Power Electron. Special. Conf., vol. 1, pp. 744-751, 1994.
[11] Bose, B. K., N. R. Patel, “Quasi-fuzzy estimation of stator resistance of induction motor,” IEEE Trans. Ind. Electron., vol. 13, no. 3, pp. 401-409, May 1998.
[12] Cabera, L., M. E. Elbuluk, and I. Husain, “ Tuning the stator resistance of induction motor using artificial neural network,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 779-787, Sep. 1997.
[13] Habetler, T. G., F. Profumo, G. Griva, and M. Pastorelli, “Stator resistance tuning in a stator-flux field-oriented drive using an instantaneous hybrid flux estimator,” IEEE Trans. Power Electron., vol. 13, no. 1, pp. 125-133, Jan. 1998.
[14] Lee B. -S., R. Krishnan, “Adaptive stator resistance compensator for high performance direct torque controlled induction motor drives,” in Conf. Record, IEEE Ind. Appl. Soc. Annu. Meet., vol. 1, pp. 423-430, 1998.
[15] Hassan, I. El, X. Roboam, B. de. Fornel, and E. V. Westerholt, “Torque dynamic behaviour of induction machine DTC in 4 quadrant operation,” in Proc. IEEE Int. Symp. Ind. Electron., vol. 3, pp. 1034-1038, 1997.
[16] Casadei, D., G. Serra, and A. Tani, “Analytical investigation of torque and flux ripple in DTC schemes for induction motors,” in Proc. IEEE Int. Conf. Ind. Electron. Contr. and Instrument., vol. 2, pp. 552-556, 1997.
[17] Yongdong, L., S. Jianwen, and S. Baojun, “Direct torque control of induction motor for low speed drives considering discrete effects of control and dead-time of inverter,” in Conf. Rec. IEEE Ind. Appl. Soc. Annu. Meet., vol. 1, pp. 781-788, 1997.
[18] Chakrabarti, S., M. Ramamoorty, and V. R. Kanetkar, “Reduction of torque ripple in direct torque control of induction motor drives using space vector modulation based pulse width modulation,” in Proc. Int. Conf. Power Electron. Drive Syst., vol. 1, pp. 117-121, 1997.
[19] Kang, J-K., S.-K. Sul, “Torque ripple minimization strategy for direct torque control of production motor,” in Conf. Rec. IEEE Ind. Appl. Soc. Annu. Meet., vol. 1, pp. 438-443, 1998.
[20] Nash, J. N., “ Direct torque control, induction motor vector control without an encoder,” IEEE Trans. Ind. Appl. vol. 33, no. 2, pp. 333-341, Mar./Apr. 1997.
[21] Perng, S. S., Yen-Shin Lai and Chang-Huan Liu “Sensorless vector controller for induction motor drives with parameter identification ,” in Proc. IEEE Int. Conf. Ind. Electron., Aachen, Germany, vol.2, pp.1008 —1013, 1998.
[22] Bose, B. K., N. R. Patel, “A sensorless stator flux oriented vector controlled induction motor drive with neuro-fuzzy based performance enhancement,” in Conf. Rec. IEEE Ind. Appl. Soc. Annu. Meet., vo1. 1, pp. 393-400, 1997.
[23] Hu, Y. W., L. Zhong, M. F. Rahman, K. W. Lim, Y. Xu, M. A. Rahman, and A. R. Bhuiya, “Direct torque control of an induction motor using fuzzy logic,” in Proc. IEEE Conf. Electrical and Computer Engineering, vol. 2, pp. 767-772, 1997.
[24] Bose, B. K. “Intelligent control and estimation in power electronics and drives,” in Conf. Rec. IEEE Int. Electric Machines and Drives, pp. TA2/2.1 - TA2/2.6, 1997.
[25] Minh, T. C., Hoang Le-Huy “Rotor resistance estimation using fuzzy logic for high performance induction motor drives” in Proc. IEEE Annu. Conf. Ind. Electron. Soc., vol. 1, pp. 303 —308, 1998.
[26] Ouhrouche, M. A., S. Lefebvre, and X. D. Do, “Application of an extended Kalman filter to rotor speed and resistance estimation in induction motor vector control,” in Proc. IEEE Electrical and Computer Engineering, vol. 1, pp. 297 —300, 1998.
[27] Atkinson, D. J., P. P. Acarnley and J. W. Finch, “Application of estimation techniques in vector-controlled induction motor drives,” in Proc. Int. Conf. Power Electronics and Variable-Speed Drives, pp. 358-363,1990.
[28] Wade, S., M. W. Dunnigan and B. W. Williams, “Comparison of stochastic and deterministic parameter identification algorithms for indirect vector control,” Proc. IEE Colloq. Vector Control and Direct Torque Control of Induction Motors, pp. 2/1 - 2/5, 1995.
[29] Du, T., P. Vas and F. Stronach, “Design and application of extended observers for joint state and parameter estimation in high-performance AC drives,” IEE Proc. Electric Power Applications, vol. 142, no. 2, pp. 71 —78, Mar. 1995.
[30] Atkinson, D. J., J. W. Finch, and P. P. Acarnley, “Estimation of rotor resistance in induction motors,” IEE Proc. Electric Power Applications, vol. 143, no. 1, pp. 87 —94, Jan. 1996.
[31] Wade, S., M.W. Dunnigan and B. W. Williams, “Improving the accuracy of the rotor resistance estimate for vector-controlled induction machines” IEE Proc. Electric Power Applications, vol. 144, no. 5, pp. 285 —294, Sept. 1997.
[32] Dell''Aquila, A., F. Cupertino, L. Salvatore and S. Stasi, “Kalman filter estimators applied to robust control of induction motor drives,” in Proc. IEEE Annu. Conf. Ind. Electron. Soc., vol. 4, pp. 2257-2262, 1998.
[33] Wade, S., M. W. Dunnigan and B. W. Williams, “Modeling and simulation of induction machine vector control with rotor resistance identification,” IEEE Trans. Power Electron., vol. 12, no. 3, pp. 495-505, May 1997.
[34] Marino, P., V. Mungiguerra, F. Russo and F. Vasca, “Parameter and state estimation for induction motors via interlaced least squares algorithm and Kalman filter,” in Conf. Rec. IEEE Annu. Power Electronics Specialists, vol.2, pp.1235 —1241, 1996.
[35] Zai, L. C., C. L. Demacro and T. A. Lipo, “An extended Kalman filter approach to rotor time constant measurement in PWM induction motor drives,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 96-104, Jan./Feb. 1992.
[36] Garcia S., G., E. Mendes, and A. Razek, “Reduced-order observers for rotor flux, rotor resistance and speed estimation for vector controlled induction motor drives using the extended Kalman filter technique,” IEE Proc. Electric Power Applications, vol. 146, no. 3, pp. 282-288, May 1999.
[37] El Moucary, C., S. G. Garcia, E. Mendes, “Robust rotor flux, rotor resistance and speed estimation of an induction machine using the extended Kalman filter,” in Proc. IEEE Int. Symp. Ind. Electron., vol. 2, pp. 742 —746, 1999.
[38] Ouhrouche, M. A., “Vector control of an induction motor with on-line rotor resistance identification,” in Proc. IEEE Conf. Electrical and Computer Engineering, vol. 2, pp. 1121-1125, 1999.
[39] Saitoh, T., T. Okuyama and T. Matsui, “An automated secondary resistance identification scheme in vector controlled induction motor drives,” in Conf. Rec. IEEE Ind. Appl. Soc. Annu. Meet., pp. 594 —600, vol. 1, 1989.
[40] Chan, C. C. and H. Wang, “An effective method for rotor resistance identification for high-performance induction motor vector control,” IEEE Trans. Ind. Electron., vol. 37, no. 6, pp. 477- 482, Dec. 1990.
[41] Tsuji, M., C. Shuo, K. Izumi, T. Ohta, and E. Yamada, “A speed sensorless induction motor vector control system using q-axis flux with parameter identification,” in Proc. IEEE Int. Conf. Ind. Electron., Contr., and Instrument., vol. 2, pp. 960-965, 1997.
[42] Cheng, K.W.E., H. P. Zelaya, P. D. Evans, and K. Bresnahan, “Flux oriented control without using rotor time constant and stator resistance,” Proc. IEE Colloqu., Advances in Control Systems for Electric Drives, pp. 7/1 -7/4, 1995.
[43] Ilas, C., and R. Magureanu, “A general adaptation mechanism and its applications to induction motor direct field oriented drives,” in Proc. IEEE Int. Symp. Ind. Electron., vol. 2, pp. 923-928, 1996.
[44] Ohmori, Y., M. Takagi and T. Kiriya, “Improvement of lower side speed control characteristics of an induction motor without a speed sensor,” in Conf. Rec. PCC’97, vol.2, pp. 531 —534, 1997.
[45] Tsuji, M., S. Chen, K. Izumi and E. Yamada, “Stability improvement of speed sensorless induction motor vector control system using q-axis flux with stator resistance identification,” in Conf. Rec. IEEE Annu. Power Electronics Specialists Conf., vol.2, pp.1587 —1592, 1998.
[46] Lin, F. J. and Su Ho-Ming “A high-performance induction motor drive with on-line rotor time-constant estimation,” IEEE Trans. Energy Conversion, vol. 4, pp. 297 —303, Dec. 1997.
[47] Jansen, P. L., and R. D. Lorenz,“Accuracy limitations of velocity and flux estimation in direct field orientated induction machines,”in Proc. European Power Electronics Conference, Brighton, pp. 312-318, 1993.
[48] Luo, Y. C., C. H. Liu and Y. S. Lai, “Direct torque control of induction motor with no influence of resistance variation,” in Proc. 19th Symposium on Electrical Power Engineering, Taipei, Taiwan, R.O.C. pp. 1116-1120, 1998.
[49] Asher, G. M., R. Blasco-Gimenez, M. Sumner, and K. J. Bradley, “Dynamic performance limitations for MRAS based sensorless induction motor drives. I. Stability analysis for the closed loop drive,” IEE Proc. Electric Power Applications, vol. 143, no. 2, pp. 113 —122, Mar. 1996.
[50] Wang, C., G. Tan and N. Wang, “High performance speed-sensor-less AC drive system for induction motor,” in Proc. IEEE TENCON’93, Beijing, pp.602 —606, 1993.
[51] Nait Said, M. S., M. E. H. Benbouzid, “Induction motors direct field oriented control with robust on-line tuning of rotor resistance,” IEEE Trans. Energy Conversion, vol. 14, no. 4, pp. 1038-1042, Dec. 1999.
[52] Lin, F. J., H. M. Su and H. P. Chen “Induction motor servo drive with adaptive rotor time-constant estimation ,” IEEE Trans.n Aerospace and Electronic Systems, vol. 34, no. 1, pp. 224 —234, Jan. 1998.
[53] Ide, K., Z. G. Bai; Z. J. Yang and T. Tsuji, “Torque control of induction machine by vector approximation with parameter adaptation based on MRAS,” in Proc. IEEE Int. Conf. Ind. Electron., Contr., and Instrument., vol. 1, pp. 281 —286, 1994.
[54] Huang, S. J. and R. W. Tsai, “ Rotor resistance estimation of a vector controlled induction motor using a model reference adaptive system,” in Proc. 19th Symposium on Electrical Power Engineering, Taipei, Taiwan, R.O.C. pp. 180-185, 1998.
[55] Jemli, M., M. Boussak, M. Gossa, and A. Chaari, “Rotor time constant identification in vector controlled induction motor applied flux model reference adaptive system (MRAS),” in Proc. Electrotechnical Conference 7th Mediterranean , vol. 2, pp. 797 - 800, 1994.
[56] Perng, S. S., C. H., Liu and Y. S. Lai, “ Sensorless Control for Induction Motor Drives with Parameter Identification,” in Proc. 19th Symposium on Electrical Power Engineering, Taipei, Taiwan, R.O.C. pp. 853-857, 1998.
[57] Zhen, L., L. Xu, “Sensorless field orientation control of induction machines based on a mutual MRAS scheme,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 824-831, Oct. 1998.
[58] Kanmachi, T. and I. Takahashi, “ Sensorless speed control of an induction motor with no influence of resistance variation,” in Proc. IEEE Power Conversion Conference-NAGAOKA, pp. 91-96, 1997.
[59] Beguenane, R., M. El Hachemi Benbouzid, “Induction motors thermal monitoring by means of rotor resistance identification,” in Conf. Rec. IEEE Int. Electric Machines and Drives, pp. TD3/5.1 —TD3/5.3, 1997.
[60] Perng, S. S., C. H. Liu and Y. S. Lai, “ Speed Sensorless Control of Induction Motor with rotor resistance adaptation,” in Proc. 18th Symposium on Electrical Power Engineering, Taipei, Taiwan, R.O.C. pp.570-574, 1997.
[61] Tamai, S., S. Hidehiko, and M. Yano,“Speed sensorless vector control of induction motor with model reference adaptive system,”in Conf. Rec. IEEE Ind. Appl. Soc., pp. 189-195, 1987.
[62] Ide, K., Z. G. Bai; Z. J. Yang and T. Tsuji, “Vector approximation method with parameter adaptation and torque control of CSI-fed induction motor,” IEEE Trans. Ind. Appl., vol. 31, no. 4, pp. 830 —840, July-Aug. 1995.
[63] Kim, M. H. and J. C. Hung,“Vector control system for induction motor without speed sensor at very low speed,”in Proc. IEEE Int. Conf. Ind. Electron., Contr., and Instrument., vol. 1, pp. 524-529, 1995.
[64] Bird, I. G., H. Zelaya De La Parra, “Fuzzy logic torque ripple reduction for DTC based AC drives,” Electronics Letters vol. 33, no. 17, pp. 1501-1502, Aug. 1997.
[65] Mir, S., M. E. Elbuluk, “Precision torque control in inverter-fed induction machines using fuzzy logic,” in Conf. Rec. IEEE Power Electronics Specialists Conf., 26th Annu., vol. 1, pp. 396-401, 1995.
[66] Wu, X. Q., A. Steimel, “Direct torque control of induction machines fed by a double three-level inverter,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 519-527, August 1997.
[67] Maes, J., J. Melkebeek, “Discrete time direct torque control of induction motors using back-EMF measurement,” in Conf. Rec. IEEE Ind. Appl. Soc., Annu. Meet., vol. 1, pp. 407-414, 1998.
[68] Casadei, D., G. Serra, and A. Tani, “Improvement of direct torque control performance by using a discrete SVM technique,” in Conf. Rec. IEEE Power Electronics Specialists Conf. 29th Annu, vol. 2, pp. 997 —1003, 1998.
[69] Jun-Koo., K., S. Seung-Ki, “New direct torque control of induction motor for minimum torque ripple and constant switching frequency,” IEEE Trans. Ind. Appl., vol. 35, no. 5, pp. 1076-1082, Sept./Oct. 1999.
[70] J., Chen, L. Yongdong, “Virtual vectors based predictive control of torque and flux of induction motor and speed sensorless drives,”in Conf. Rec. IEEE Ind. Appl. Soc., Annu. Meet., vol. 4, pp. 2606-2613, 1999.
[71] Green, T. C., and B. W. Williams, “Derivation of motor line-current waveforms from the dc link current of an inverter,” Proc. IEE, Pt. B., vol. 136, no. 4, pp. 196-204, 1989.
[72] Xue, Y., X. Xu, T. G. Habetler, and D. M. Divan, “A stator flux- oriented voltage source variable-speed drive based on dc link measurements,” IEEE Trans. Ind. Appl., vol. 27, no. 5, pp.962-969, 1991.
[73] Casadei, D., G. Grandi, G. Serra, and A. Tani, “Switching strategy in direct torque control of induction machines,” in Proc. ICEM’94, pp. 204-209, Sept., 1994.
[74] Buja, G., D. Casadei, and G. Serra, “DTC-based strategies for induction motor drives,” in Proc. IEEE Int. Conf. Ind. Electron., Contr., and Instrument., vol. 4, pp. 1506-1516, 1997.
[75] Huang, N., L. Zhao and Y. Cui, “A direct self-control system of induction motor with resonant DC link,” in Proc. POWERCON ''98, vol. 1, pp. 630 —634, 1998.
[76] Burgers, K. C., J. D. van Wyk, M. J. Case, “A high performance induction motor drive system based on a non-linear resonant pole soft switching inverter,” in Conf. Rec. IEEE Power Electronics Specialists Conf. 23rd Annu., vol.1, pp. 111 —118, 1992.
[77] Casadei, D., G. Serra, and A. Tani, “Stator flux vector control for high performance induction motor drives using space vector modulation,” Electromotion, vol. 2, no. 2, pp. 79-86, 1995.
[78] Casadei, D., G. Serra, and A. Tani, “Constant frequency operation of a DTC induction motor drive for electric vehicle,” in Proc. ICEM’96, vol. III, pp. 224-229, 1996.
[79] Lochot,, Ch., X. Roboam, P. Maussion, “A new direct torque control strategy for an induction motor with constant switching frequency operation,” in Proc. EPE’95, vol. 2, pp. 431-436, 1995.
[80] Lascu, C. I., Boldea, F. Blaabjerg, “A modified direct torque control for induction motor sensorless drive,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 122-130, Jan./Feb. 2000.
[81] Krishman, R., and A. S. Bharadwaj, “A review of parameter sensitivity and adaption in indirect vector controlled induction motor drive systems,” IEEE Trans. Power Electronics, vol. 6, no. 4, pp.695-703, 1991.
[82] Habetler, T. G., and D. M. Divan, “Control strategies for direct torque control using discrete pulse modulation,” IEEE IAS Ann. Meet., pp. 514-522, 1989. (also see IEEE Trans. on Ind. Appl., Vol. 27, No. 5, pp. 893-901, 1991.)
[83] Griva, G., T. G. Habetler, F. Profumo and M. Pastorelli, “performance evaluation of a direct torque control drive in the continuous PWM-square wave transition region,” IEEE Trans. Power Electrons., vol. 10, no. 4, pp. 464-471, 1995.
[84] Kazmierkowski, M. P., and A. B. Kasprowicz, “Improved direct torque and flux vector control of PWM inverter-fed induction motor drives,” IEEE Trans. Ind. Electron., vol. 42, no. 4, pp. 344-350, 1995.
[85] Chapuis,Y. A., D. Roye and J. Davoine, “Principles and implementation of direct torque control by stator flux orientation of an induction motor,” in Proc. IEEE Applied Power Electronics Conf. and Exposition, pp.185-191, 1995.
[86] Habetler, T. G., F. Profumo, and M. Pastorelli, “Direct torque control of induction machines over a wide speed range,” in Conf. Rec. IEEE Ind. Appl. Soc. Annu. Meet., Houston, vol. 1, pp. 600-606, 1992.
[87] Hurst, K. D., T. G. Habetler, G. Griva, and F. Profumo, “Zero-speed tacholess IM torque control: simply a matter of stator voltage integration,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 790-795, July/Aug. 1998.
[88] Ju, J., and B. Wu, “New integration algorithm for estimating motor flux over a wide speed range,” IEEE Trans. Power Electron., vol. 13, no. 5, pp. 969-977, Sep. 1998.
[89] van der Broeck, H. W., H. C. Skudelny, and G. V. Stanke, “Analysis and realization of a pulsewidth based on voltage space vectors,” in Conf. Rec. IEEE Ind. Appl. Soc. Annu. Meet., pp. 244-251, 1986.
[90] Xu, Y. X., Xu, T. G. Habelter and D. M. Divan, “A low cost stator flux oriented voltage source variable speed drive,” in Proc. IEEE Ind. Appl. Soc. Annu. Meet., pp. 410-415, 1990.
[91] Bonanno, C. J., L. Xu, and X. Xu, “Robust parameter insensitive position sensorless field orientation control of the induction machine,” in Proc. IEEE Power Electronics Specialists Conf., vol. 1, pp. 752-757, 1994.
[92] Lazhar, B. B., and A. Kawamura, “A fully digitized field-oriented controlled induction motor drive using only current sensor,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 241-249, June 1992.
[93] Xu, X. D., W. Novotuy, “Implementation of direct stator flux orientation control on a versatile DSP based system,” in Conf. Record. IEEE Ind. Appl. Soc., Annu. Meet., Seattle, vol. 1, pp. 404-409, 1990.
[94] Beguenane, R., M. EI Hachemi Benbouzid, “Induction motors thermal monitoring by means of rotor resistance identification,” in Conf. Rec. IEEE Int. Electric Machines and Drives, pp. TD2/4.1- TD2/4.3, 1997.
[95] Pana, T., “Model based speed and rotor resistance estimation for sensorless vector-controlled induction motor drives using floating point DSP,” in Proc. AMC ''96-MIE, vol.1, pp. 168-173,1996.
[96] Umanand, L. and S. R. Bhat, “Online estimation of stator resistance of an induction motor for speed control applications,” in Proc. Electric Power Applications, vol. 142, no. 2, pp. 97-103, Mar. 1995.
[97] Akatsu, K. and A. Kawamura, “Sensorless speed estimation based on primary and secondary resistance estimation and output voltage compensation of induction motor,” in Proc. PCC ''97, Nagaoka, vol.1, pp.73 —78, 1997.
[98] Pana, T., “Sensorless vector-controlled induction motor drive system with rotor resistance estimation using parallel processing with floating point DSP,” in Proc. Power Conversion Conf. — Nagaoka, , vol.1, pp. 79-84, 1997.
[99] Shirsavar, S. A., M. D. McCulloch, and C. G. Guy, “Speed sensorless vector control of induction motors with parameter estimation,” in Conf. Rec. IEEE Ind. Appl. Soc. Annu. Meet., vol. 1, pp. 262-269, 1996.
[100] Guidi, G., H. Umida, “A sensorless induction motor drive for low speed applications using a novel stator resistance estimation method,” in Conf. Rec. IEEE Ind. Appl. Soc. Annu. Meet., vol. 1, pp. 180-186, 1999.
[101] Marino, R., S. Peresada, and P. Tomei, “On-line rotor resistance estimation for induction motors,” in Proc. IEEE Int. Conf. Ind. Electron., Contr., and Instrument., vol. 3, pp. 2137-2142, 1994.
[102] Marino, R., S. Peresada, and P. Tomei, “Exponentially convergent rotor resistance estimation for induction motors,” IEEE Trans. Ind. Electron., vol. 42, no. 5, pp. 508-515, Oct. 1995.
[103] P. Vas, Vector Control of AC machines, Oxford University Press, 1990.
[104] Y. D. Landau, Adaptive Control: the Model Reference Approach. New York, NY: Marcel Dekker, 1979.
[105] Kubota, H., K. Matsuse,“Speed sensorless field oriented control of induction motor with rotor resistance adaptation,”IEEE Trans. Ind. Appl., vol. 30, no. 5, pp. 1219-1224, Sep/Oct. 1994.
[106] Yang, G. and T. H. Chin,“Hyperstability of the full-order observer for vector-controlled induction motor drive without speed sensor,”Electrical Engineering in Japan, vol. 113, no. 1, pp.109-118, 1993.
[107] Peng, F. Z. and T. Fukao,“Robust speed identification for speed-sensorless Vector control of induction motors,”IEEE Trans. Ind. Appl., vol. 30, no. 5, pp. 1234-1240, Sep./Oct. 1994.
[108] V. M. Popov, Hyperstability of Automatic Control System. New York: Springer-Verlag, 1973.
[109] 彭世興,“具線上參數調適之無測速器感應馬達驅動技術”,國立台灣科技大學電機研究所博士學位論文,民國八十八年七月。
[110] 王正傑,“PC-Based 馬達控制器視覺化發展系統之研究”,國立雲林科技大學電機研究所碩士論文,民國八十七年六月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊