跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/05 02:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄒宇新
研究生(外文):Yu-Hsin Chou
論文名稱:以最佳結構拓樸為基之自動形狀最佳化技術
論文名稱(外文):Automatic Shape Optimization Based on Optimal Structural Topology
指導教授:林其禹林其禹引用關係
指導教授(外文):Chyi-Yeu Lin
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:101
中文關鍵詞:拓樸最佳化形狀最佳化圖形識別
外文關鍵詞:Topology OptimizationShape OptimizationImage Interpretation
相關次數:
  • 被引用被引用:7
  • 點閱點閱:583
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:1
本文發展自動影像處理技術、圖形識別技術及孔洞擴張策略,自動結合拓樸最佳化與形狀最佳化,以求得最佳之結構設計。首先根據拓樸最佳化後之結果,在圖形連續且合理的前提下,經由影像處理的過程,留下定量材料之有限元素網格;再藉由圖形識別技術,將呈現鋸齒狀之影像處理後圖形,利用關鍵點的選取與連接來決定結構之外部輪廓形狀,並根據特徵值判別法來定義內部孔洞之形狀、位置、尺寸及旋轉角度。再以圖形識別後之外部輪廓與内部孔洞的模型定義為基礎,藉由干涉判斷與旋轉策略來進行孔洞擴張策略,即可自動設定執行形狀最佳化所需之設計變數與參數,進而執行形狀最佳化以求得結構之最佳幾何形狀。
This research aims to develop techniques required to integrate topology optimization, image interpretation, and shape optimization so that an automatic procedure is enabled to create a final structural configuration based solely on initial conditions. These steps include the use of topology optimization to define a good structure topology with arbitrary shapes of outer boundary and inner holes. The second step involves techniques to identify these boundary and interior holes by identification algorithms. After the outer and inner boundaries are defined, techniques that define the subsequent shape optimization problem with proper upper and lower bounds of shape controlling parameters are proposed. This research suggests techniques to construct a largest but not interfering space for each of existing interior holes so that the shape optimization can be conducted with flexible and proper bounds. This research concludes that the automatic procedure of integrating topology and shape optimization is fully functional and worth of continued studies.
中文摘要 I
Abstract II
誌 謝 III
目 錄 IV
圖表目錄 VII
符號說明 XI
第一章 緒論 1
1.1前言 1
1.2文獻回顧 3
1.3研究動機 6
1.4 本文內容綱要 8
第二章 結構設計最佳化 9
2.1形狀最佳化 9
2.2拓樸最佳化 11
2.3最佳材料分配法 13
2.3.1最佳化方法 13
2.3.2最佳材料分配法 16
2.3.3兩階段最佳材料分配法 19
2.3.4兩階段拓樸最佳化執行策略 20
2.4自動影像處理執行技術 24
2.4.1門檻值的決定 24
2.4.2連續圖形之定義 26
2.4.3圖形修補策略 27
第三章 特徵值判別法 30
3.1外部幾何形狀的定義 30
3.2內部幾何形狀的定義 34
第四章 自動形狀最佳化執行技術 42
4.1結構幾何形狀模型定義 42
4.1.1外部輪廓之定義 42
4.1.2內部孔洞之定義 43
4.2孔洞擴張策略 44
4.2.1外部輪廓與內部孔洞間之干涉判斷 44
4.2.2內部孔洞間之干涉判斷 46
4.2.3旋轉策略 47
4.2.4邊孔擴張策略 48
4.3設定形狀最佳化參數 49
4.4系統流程 49
第五章 自動形狀最佳化執行範例 56
5.1垂直受力懸臂樑 56
5.2單負荷兩端固定樑 60
5.3水平受力懸臂樑 64
5.4懸臂中空樑 68
5.5自動化流程範例探討 72
第六章 結論與建議 75
6.1 結論 75
6.2 建議 77
附錄 79
參考文獻 95
作者簡介 101
[1] Michell, A. G. M., “The Limits of Economy of Material in Framed Structures,” Philosophy Magazine, Series 6, Vol. 8, pp. 589-597 (1904).
[2] Wagner, H., “Remarks on Airplane Struts and Girders under Compressive and Bending Stresses,” Aeronautical Research Council, Reports and Memoranda, No. 500 (1929).
[3] Cox, H. L. and Smith, H. E., “Structures of Minimum Weight,” Aeronautical Research Council, Reports and Memoranda, No. 1923 (1945).
[4] Zahorski, A., “Effects of Material Distribution on Strength of Panels,” Journal of Aeronautical Science, Vol. 11, No. 3, pp. 247-253 (1944).
[5] Schmit, L. A., “Structural Design by Systematic Synthesis,” Proceedings of the 2nd Conference on Electronic Computation, ASCE, New York, pp. 105-122 (1960).
[6] Gallagher, R. H. and Zienkiewicz, O. C., Optimum Structural Design, McGraw-Hill, New York (1973).
[7] Haftka, R. T. and Kamat, M. P., Elements of Structural Optimization, Martinus Nijhoff, Boston (1985).
[8] Leitmann, G., Optimization Techniques with Applications to Aerospace Systems, Academic Press, New York (1962).
[9] Johnson, R. C., Optimum Design of Mechanical Elements, John Wiley & Sons, New York (1961).
[10] Kincaid, R. K., and Padula, S. L., “Minimizing Distortion and Internal Forces in Truss Structure by Simulated Annealing,” Proceedings of the 30th AIAA/ASME/ASCE/ASHS/ASC Structures, Structural Material and Dynamics Conference , pp. 327-333 (1990).
[11] May, S. A., and Balling, R. J., “A Filtered Simulated Annealing Strategy for Discrete Optimization of 3D Steel Frameworks,” Structural Optimization, Vol. 4, pp. 142-148 (1992).
[12] Nielsen, R., and Sandvig, J., “Optimization of Energy Systems by Simulated Annealing,” ASNE Conference, New York, pp. 321-326 (1993).
[13] Lin, C. Y., and Jiang, J. F., “Nonconvex and Discrete Optimal Design Using Multiple State Simulated Annealing,” Structural Optimization, Vol. 14, pp. 121-128 (1997).
[14] Hajela, P., “Genetic Search — An Approach to the Nonconvex Optimization Problems,” Proceedings of the 30th AIAA/ASME/ASCE/ASHS/ASC Structures, Structural Material and Dynamics Conference, Mobile, Alabama, pp. 165-175 (1989).
[15] Lin, C. Y., and Hajela, P., “Genetic Algorithms in Optimization Problems with Discrete and Integer Design Variables,” Engineering Optimization, Vol. 19, pp. 309-327 (1992).
[16] Grieson, D. E., and Pak, W. H., “Optimal Sizing, Geometrical and Topological Design Using a Genetic Algorithm,” Structural Optimization, Vol. 6, pp. 151-159 (1993).
[17] Ohsaki, M., “Genetic Algorithm for Topology Optimization of Trusses,” Computers & Structures, Vol. 57, No. 2, pp. 219-225 (1995).
[18] Rajan, S. D., “Sizing, Shape, and Topology Design Optimization of Truss Using Genetic Algorithm,” Journal of Structural Engineering, Vol. 121, No. 10, pp. 1480-1487 (1995).
[19] Haftka, R.T., and Grandhi, R. V., “Structural Shape Optimization — A Survey,” Computer Methods in Applied Mechanics and Engineering, Vol. 57, pp. 91-106 (1986).
[20] Bendse, M. P., and Kikuchi, N., “Generating Optimal Topologies in Structural Design Using a Homogenization Method,” Computer Method in Applied Mechanics and Engineering, Vol. 71, pp. 197-224 (1988).
[21] Suzuki, K., and Kikuchi, N., ”A Homogenization Method for Shape and Topology Optimization,” Computer Method in Applied Mechanics and Engineering, Vol. 93, pp. 291-318 (1991).
[22] Mlejenk, H. P., “Some Aspects of the Genesis of Structures”, Structural Optimization, Vol. 5, pp. 64-69 (1992).
[23] Thomsen, J., ”Topology Optimization of Structures Composed of One or Two Materials,” Structural Optimization, Vol. 5, pp. 108-115 (1992).
[24] Mlejnek, H. P., and Schirrmacher, R., “An Engineer’s Approach to Optimal Material Distribution and Shape Finding,” Computer Method in Applied Mechanics and Engineering, Vol. 106, pp. 1-26 (1993).
[25] Bendse, M. P., and Haber, R. B., “The Michell Layout Problem as a Low Volume Fraction Limit of the Perforated Plate Topology Optimization Problem: an Asymptotic Study,” Structural Optimization, Vol. 6, pp. 263-267 (1993).
[26] Papalambros, P. Y., and Chirehdast, M., “An Integrated Environment for Structural Configuration Design,” Journal of Engineering Design, Vol. 1, No. 1, pp. 73-96 (1990).
[27] Bremicker, M., Chirehdast, M., Kikuchi, N., and Papalambros, P. Y., “Integrated Topology and Shape Optimization in Structural Design,” Mechanics of Structures and Machines., Vol. 19, No. 4, pp. 551-587 (1991).
[28] Chirehdast, M., Gea, H. C., Kikuchi, N., and Papalambros, P. Y., “Structural Configuration Examples of an Integrated Optimal Design Process,” Journal of Mechanical Design, Vol. 116, pp. 997-1004 (1994).
[29] Hsu, Y. L., Chen, C. T., and Hsu, M. S., ”Interpreting Results from Topology Optimizatin Using Density Contours,”中國機械工程學會第十五屆學術研討會論文集, 台南市, pp. 855-860 (1998).
[30] Hsu, Y. L., Guo, Y. S., and Sun, T. L., ”A Skeleton Curvature Function Method for Two-Dimensional Shape Optimization Under Stress Constraints,” Journal of the Chinese Society of Mechanical Engineers, Vol. 17, No. 4, pp. 405-411 (1996).
[31] Rosen, D. W., and Grosse, I. R., “A Feature Based Shape Optimization Technique for the Configuration and Parametric Design of Flat Plates,” Engineering with Computers, Vol. 8, pp. 81-91 (1992).
[32] Lin, C. Y., and Chao, L. S., “Automated Image Interpretation for Integrated Topology and Shape Optimization,” accepted for publication in Structural Optimization (1999).
[33] Chen, T. Y., Wang, B. P., and Chen, C. H., ”Minimum Compliance Design Using Topology Approach,”中國機械工程學會第十二屆學術研討會論文集, 嘉義縣, pp. 841-848 (1995).
[34] Vanderplaats, G. N., Numerical Optimization Techniques for Engineering Design, McGraw-Hill (1993).
[35] 徐業良,工程最佳化設計,國立編譯館 (1995).
[36] Jones, R. M., Mechanics of Composite Materials, Scripta Book Company, Washington D. C. (1975).
[37] Lin, C. Y., and Chou, J. N., “A Two-stage Approach for Structural Topology Optimization,” Advances in Engineering Software, Vol. 30, pp. 261-271 (1999)
[38] Davies, E. R., Machine Vision, Academic Press, London, UK (1990).
[39] Ballard, D., and Brown, C., Computer Vision, Prentice Hall, Englewood Cliffs, NJ (1982).
[40] Maute, K., and Ramm, E., “Adaptive Topology Optimization,” Structural Optimization, Vol. 10, pp. 100-112 (1995).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top