跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 10:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:姜錦宏
研究生(外文):Jin-Horng Chiang
論文名稱:探討不同離子基對水性PU物性影響之情形
論文名稱(外文):On the Study of the Effect of Different Ionic Groups on the Physical Property of Water-Based PU Resins
指導教授:趙 鼎 揚
指導教授(外文):D. Y. Chao
學位類別:碩士
校院名稱:中國文化大學
系所名稱:應用化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:86
中文關鍵詞:離子基
外文關鍵詞:ionic group
相關次數:
  • 被引用被引用:1
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
甲苯二異氰酸酯(TDI)與二甲醇基丙酸(DMPA)或是1,3-磺酸鈉基二胺(ES-200)及其他添加物,經反應所合成的水性PU樹脂之分子結構,已由FT-IR光譜證實。
水性PU樹脂溶液的表面張力會隨二甲醇基丙酸(DMPA)濃度的增高而變大,這是因為吸附在水面上的非極性基受二甲醇基丙酸(DMPA)濃度的增高而排列的較整齊之故,在相同的實驗條件下,水性PU樹脂溶液的表面張力會隨1,3-磺酸鈉基二胺(ES-200)濃度的增高而變小,這是因為吸附在水溶液表面上的非極性基增多之故。水性PU樹脂溶液的黏度會隨二甲醇基丙酸(DMPA)或是1,3-磺酸鈉基二胺(ES-200)濃度的增高而逐漸變小,這是因為水性PU樹脂分子本身作用力的增強(即intermolecular interaction),使得分子的自由體積變小,而導致水性PU樹脂溶液的黏度變小。
本實驗數據顯示,水性PU樹脂皮膜的拉應力及剛性會隨二甲醇基丙酸(DMPA)或是1,3-磺酸鈉基二胺(ES-200)濃度的增高而變小,這是因為水性PU樹脂分子本身作用力的增強,使得水性PU樹脂分子形成緊縮型或微胞型的分子結構,而導致水性PU樹脂皮膜的拉應力及剛性變小。至於水性PU樹脂皮膜之伸長率會隨二甲醇基丙酸(DMPA)或是1,3-磺酸鈉基二胺(ES-200)濃度的增高而變大,這是因為水性PU樹脂分子的極性基增多及分子與分子間作用的結果。
水性PU樹脂溶液的平均粒徑會隨二甲醇基丙酸(DMPA)或是1,3-磺酸鈉基二胺(ES-200)濃度的增高而逐漸變大,原因是因為水性PU樹脂分子上的極性基間的相互作用,使得水性PU樹脂分子的自由體積變大,結果導致水性PU樹脂分子的平均粒徑變大。水性PU樹脂貼合織布的剝離強度,會隨二甲醇基丙酸(DMPA)濃度的增高而變小,原因是因為水性PU樹脂分子上的非極性基增多,而使得水性PU樹脂貼合織布的剝離強度減弱,在相同的實驗條件下,水性PU樹脂貼合織布的剝離強度,會隨1,3-磺酸鈉基二胺(ES-200)濃度的增高而變大,原因是因為水性PU樹脂分子上的極性基增多,而使得水性PU樹脂貼合織布的剝離強度增強。

The reaction of toluene diisocyanate(TDI) with dimethylol propionic acid(DMPA)or 1,3-propane sultone(ES-200)and other additives to form the structure of water-based polyurethane resin has been proven by FT-IR spectra.
In aqueous solution, the surface tension of water-based polyurethane are seen to increase with increasing the concentration of dimethylol propionic acid(DMPA). This is because the adsorption of hydrophobic at the surface of water, becoming even more order. Under the same experimental condition, the surface tension of water-based polyurethane appears to decrease with increasing the concentration of 1,3-propane sultone(ES-200), respectively, as a result of hydrophobic of 1,3-propane sultone(ES-200)adsorbed at the surface of the aqueous solution. The viscosity of water-based PU resin in aqueous solution is seen to decrease with increasing the concentration of dimethylol propionic acid(DMPA)or 1,3-propane sultone(ES-200), as a result of decreased free volume resulting from intermolecular interaction of PU ionomer molecule itself which may form compact conformation or micell-link structure.
Experimental results indicate that both tensile strength and the modulus of self-cured film of PU ionomer molecule appear to decrease with increasing the concentration of dimethylol propionic acid(DMPA)or 1,3-propane sultone(ES-200), as the result of the formation of compact conformation or micell structure resulting from strong intermolecular interaction of PU ionomer molecule. For the elongation of self-cured film of PU ionomer, it appears to increase with increasing dimethylol propionic acid(DMPA)or 1,3-propane sultone(ES-200), as a result of the intermolecular and intermolecular interaction of this ionomer molecule.
The number average particle size of water-based PU resin molecule in aqueous solution appears to increase with an increase of the concentration of dimethylol propionic acid(DMPA)or 1,3-propane sultone(ES-200), the reason because the interaction between ionomer-ionomer molecules and ionomer-water molecules may increase the free volume of the ionomer molecules, thus causing their number average particle size to increase. For the peel strength of PU ionomer, it appears to decrease with increasing dimethylol propionic acid(DMPA), the because of increased of hydrophobic groups, this may be the reason to explain why the peel strength becomes weak. Under the same experimental condition, the peel strength of PU ionomer, it appears to increase with increasing 1,3-propane sultone(ES-200), the because of increased of hydrophilic groups, this may be the reason to explain why the peel strength becomes strong.

壹、前言…………………………………………………………1
貳、理論部份……………………………………………………4
一、水性聚胺基甲酸乙酯………………………………………4
1.水性聚胺基甲酸乙酯之簡介及其優點………………………4
2.水性聚胺基甲酸乙酯的特徵…………………………………6
二、合成水性PU樹脂原料………………………………………7
1.異氰酸酯………………………………………………………7
2.多元醇…………………………………………………………12
3.離子基單體……………………………………………………13
4.鏈延長劑………………………………………………………15
5.催化劑…………………………………………………………16
6.架橋劑…………………………………………………………18
7.溶劑的選擇……………………………………………………20
8.離子基含量對水性PU樹脂之影響……………………………21
三、碳酸鹽型(磺酸鹽型)水性PU樹脂之合成………………22
參、實驗部份……………………………………………………26
一、實驗的裝置…………………………………………………26
二、分析的儀器…………………………………………………27
三、實驗的藥品…………………………………………………29
四、碳酸鹽型(磺酸鹽型)水性PU樹脂的製備………………31
1.實驗合成步驟…………………………………………………31
2.水性PU樹脂之皮膜的製備……………………………………32
五、物性之測試…………………………………………………33
1.紅外線光譜之測定……………………………………………33
2.表面張力之測定………………………………………………34
3.黏度之測定……………………………………………………36
4.機械性質之測定………………………………………………39
5.粒徑之測定……………………………………………………42
6.剝離強度之測定………………………………………………44
肆、結果與討論…………………………………………………45
一、IR光譜圖之探討……………………………………………45
二、改變Dimethylol Propionic acid(DMPA)之濃度對水性
PU樹脂溶液表面張力影響之情形…………………………51
三、改變1,3-Propane Sultone(ES-200)之濃度對水性PU樹
脂溶液表面張力影響之情形………………………………52
四、改變Dimethylol Propionic acid(DMPA)之濃度對水性
PU樹脂溶液黏度影響之情形………………………………55
五、改變1,3-Propane Sultone(ES-200)之濃度對水性PU樹
脂溶液黏度影響之情形……………………………………56
六、改變Dimethylol Propionic acid(DMPA)之濃度對水性
PU樹脂皮膜拉應力影響之情形……………………………59
七、改變1,3-Propane Sultone(ES-200)之濃度對水性PU樹
脂皮膜拉應力影響之情形…………………………………60
八、改變Dimethylol Propionic acid(DMPA)之濃度對水性
PU樹脂皮膜剛性影響之情形………………………………63
九、改變1,3-Propane Sultone(ES-200)之濃度對水性PU樹
脂皮膜剛性影響之情形……………………………………64
十、改變Dimethylol Propionic acid(DMPA)之濃度對水性
PU樹脂皮膜伸長率影響之情形……………………………67
十一、改變1,3-Propane Sultone(ES-200)之濃度對水性PU
樹脂皮膜伸長率影響之情形……………………………68
十二、改變Dimethylol Propionic acid(DMPA)之濃度對水
性PU樹脂溶液平均粒徑影響之情形……………………71
十三、改變1,3-Propane Sultone(ES-200)之濃度對水性PU
樹脂溶液粒平均徑影響之情形…………………………72
十四、改變Dimethylol Propionic acid(DMPA)之濃度對水
性PU樹脂貼合織布剝離強度影響之情形………………75
十五、改變1,3-Propane Sultone(ES-200)之濃度對水性PU
樹脂貼合織布剝離強度影響之情形……………………76
伍、結論…….………………………………………………….79
陸、參考文獻……………………………………………………84

1.經濟部工業局,”PU合成皮工業”工業減廢技術手冊.
2.岩田敬治著,賴耿陽譯著,“聚尿脂樹脂PU原理與實用”,復漢出版社.
3.Roman, N. “Advances in Water-Borne Coating” Modern Paint and coating 1991.
4.D. Dieterich, H. Reiff, Angew. Makromol. Chem., p. 26, 85 (1972).
5.Perry, E. M, Aqueous polyurethane-The time is Right, AATCC symposium, Coated Fabvics: Meeting the Challanges of the 90’s, p. 74-78, Apr (1992).
6.大澤晃, “塗料工業與環境問題”, JETI, 39 (11), p. 90-93 (1991).
7.小西敏夫,“水溶性PU樹脂之纖維加工,加工技術”.
8.Gunter Oertel, “polyurethane Handbook”, Carl Hanser Verlag, Muenchen, (1985).
9.T. A. Time, K. M. Mukhina, E. A. Sidorovich and T. S. Dmitrieva, “Inter polymer Science and Technology”, vol.19, NO.11, T/47 (1992).
10.K. H. H. Y. C. Chiang, “Interpenetrating polymer ne of poly-urethanes and epoxy resin, I”, Die Angewande Makromolekulare Chemie, 193, (1991).
11.陳雲,陳約良,“第 3 屆高分子研討會論文專集”,第六卷, p. 227.
12.Lambourne, R. Morgan: Morgan, N. “Recent advances in cross-linking and curing”, 3(1), (1992).
13.Clarke, J. B. “Additives for Water-Based Coatings”, P. P. Colour Journal 1881 p. 4290, (1991).
14.山崎九彌, “聚胺基甲酸酯系黏著劑”, 接著技術 (1991).
15.陳幹男, “自行乳化型PU之改質反應”, 應用化學研討會論文集, p. 103-106 (1992).
16.J. Brandrup and E. H. Immergut polymer Handbook, New York. (1975).
17.小西謙三, 黑木宣同, “工業合成染料化學”, 復漢出版社印行.
18.YUN CHEN, “Aqueous Dispersions of Polyurethane Anionmers Effects of Countercation” Journal. of Applied Polymer Sci, Vol.46,435,1992.
19.O. Lorenz, V. Budde and K. H. Reinmoeller, Angew. Makromol. Chem., 87, 35 (1980).
20.J. W. Rosthauser, K. Nachtkamp, In: Advances in urethane Science and Technology, Vol.10, p. 121 (1987).
21.D. Diterich, Angew. Makromol. Chem., 98, 133 (1981).
22.O. Lorenz, H. Hick, Angew. Makromol. Chem., 72, 115 (1978).
23.詹武忠, “清大博士論文”, p. 17-24 (1988).
24.D. J. David, H. B. Staley, “Analytical chemistry of the polyurethanes”, High polymers, Vol. XVI, part III, p. 34 (1969).
25.E. pretsch, T. Clerc, J. Seibl, W. Simon, “Table of Special Data for structure Determination of Organic Compounds”, 2nd edition, Springer Verlag (1989).
26.Skoog West 著, 賀孝雍譯, “儀器分析”, p. 289-292, 曉園出版社, (1990).
27.“The Conact Angle&Meaxuring System”, KRUSS K12C, Germany (1990).
28.李德育, 顏文義, 莊祖煌等編著, “聚合物物性”, p. 202-211, 高立圖書公司 (1988).
29.陳劉旺,丁金超編著, “高分子加工” p. 31-36,高立圖書公司 (1989).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top