跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/12 02:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡鴻麟
研究生(外文):Hung Ling Tsai
論文名稱:TiO2系半導體粉體之製作與特性研究
論文名稱(外文):Preparation and characterization of TiO2 semiconductor particles
指導教授:胡毅胡毅引用關係
指導教授(外文):Yi Hu
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:108
中文關鍵詞:二氧化鈦金紅石銳鈦礦相變化
外文關鍵詞:TiO2rutileanatasephase transformation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:442
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
製作氫原料為未來發展低污染電力能源的最佳途徑之一。尤其是在燃料電池電力發展與渦輪燃料上,要提高效率最直接的方法便是直接使用氫原料。因為TiO2是目前直接催化水分解最高效能之材料,所以本計劃利用TiO2 之光電化學反應以應用在電解水產氫元件上。實驗計畫即利用水性無機鹽與醇鹽溶膠—凝膠法製作負型二氧化鈦(n-type TiO2 )膠質微粒,並進行DTA、X-ray、FTIR、UV-Visible、SEM、BET、光電流測試,以了解微粒之特性對於光電效應之影響。由實驗結果發現三種製程皆可有效降低相變化(Anatase to Rutile)之溫度,尤以製程一中pH=2環境下所得之相變化溫度最低。而由UV-Visible 結果得知Rutile結構之吸收波長較Anatase結構為高。此外粒子之分散性則以利用Ti-isopropoxide或由Ti-isopropoxide中添加硝酸所製得之粒子大小較為均勻,且較為分散。至於由光電流測試結果則可得知Rutile結構所得之光電流密度較Anatase結構為大。

Abstract
Production of hydrogen is one of the best ways to develop low pollution energy source. Direct use of hydrogen also can largely promote the efficiency in the energy transition of fuel cells and automobile combustion. TiO2 has the most efficiency in water hydrolysis at present time, so the program is to utilize the photoelectro-chemistry properties of TiO2 in the device of hydrogen generation from water hydrolysis. The experiment will be conducted by using the aqueous inorganic-salt and alkoxide sol-gel method to prepare n-type TiO2 colloidals. Then, the properties of TiO2 can be characterized in DTA, X-ray, FTIR, UV-visible, SEM, BET, and electrochemical analysis. From the experimental results, all three preparing processes can lower the temperature of phase transforrmation(Rutile to Anatase), especially pH=2 in processes one. TiO2 with rutile structure has smaller energy gap and wider photo absorption range than that of Anatase. Besides, the particles obtained from the Ti-isopropoxide method and the Ti-isopropoxide with HNO3 method are much uniform with narrow distribution, and are more discrete. From the measurement of electrochemical analysis, we can know TiO2 with Anatase structure has larger photocurrent density than that with Rutile structure.

Content
摘要......................................................Ⅰ
Abstract ....................................................Ⅱ
Content ....................................................Ⅲ
Table Content.................................................Ⅶ
Figure Content................................................Ⅷ
一、Introduction...............................................1
二、Literature Review..........................................2
2-1 Photoelectric Chemistry 2
2-1-1 Electromagnetic Radiation................................2
2-1-2 The Theory of Photochemical Reactions....................2
2-2 The Photocatalytic Reaction of Semiconductor...............4
2-2-1 The Classification and CharacteristicsofSemiconductor....4
2-2-2 Electronic Properties....................................6
2-3 Hydrogen Generation by Semiconductor.......................6
2-3-1 Semiconductor Electrode..................................6
2-3-2 The Energy for Hydrogen Generation.......................8
2-3-3 The Factors for Affecting Hydrogen Generation............8
2-4 TiO2 Semiconductor Electrode...............................9
2-5 The Factors for Affecting Photochemical Properties........11
2-5-1 Effects of Dopant.......................................11
2-5-2 Effects of Material Forms...............................11
2-5-3 Effects of Electrolytes.................................11
三、Experimental Details......................................13
3-1 Preparation of the Titania Powders........................13
3-2 Differential Temperature Analysis (DTA)...................14
3-3 X-ray Diffraction Analysis................................14
3-4 Fourier Transform Infrared Spectra (FTIR).................14
3-5 UV-vis Spectroscopy.......................................14
3-6 Scanning Electron Microscopy (SEM)........................14
3-7 Surface Area Studies......................................15
3-8 Photocurrent Densities Measurement........................15
四、Results and Discussion....................................16
4-1 DTA Analysis..............................................16
4-2 X-ray Diffraction Analysis................................16
4-2-1 The Effects of the Heating Temperatures on TiO2 Structures Prepared by Process One............................16
4-2-2 The Effects of the pH Value on TiO2 Structures Prepared by Process One................................................17
4-2-3 The Effects of the Heating Temperatures on TiO2 Structures Prepared by Process Two........... ................19
4-2-4 The Effects of the Acid on TiO2 Structures Prepared by Process Two...................................................19
4-3 Fourier Transform Infrared Spectra (FTIR).................20
4-4 UV-vis Spectroscopy.......................................22
4-5 Scanning Electron Microscopy (SEM)........................22
4-6 Surface AreaStudies.......................................23
4-7PhotocurrentDensitiesMeasurement...........................23
五、Conclusions...............................................25
六、Reference.................................................26

Reference
1. J. Bard, in Electrochemistry in Research and Development, edited by R. Kalvoda and R. Parsons, Plenum Press, New York, 1985, pp.35-51.
2. K. Wiesener, ibid, 1985, pp.53-71.
3. R. M. Dell, ibid, 1985, pp53-71.
4. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev. 95(1995)69-71.
5. 工業材料106期, 1995, p109.
6. K. V. Kordesch, and G. R. Simader, Chem. Rev. 95(1995)191-207.
7. Fujishima and K. Honda, “Elecyrochemical photolysis of water at a semiconductor”, Nature Vol.238, p.37(1972).
8. H. H. Kung, et al., “Semiconducting oxide anodes in photoassisted electrolysis of water”, J. Appl. Phys., Vol.48, No.6, p.2436(1977).
9. Jan. F. Rabek., Mechanisms of Photophysical Processes and Photochemical Reaction in Polymers, Theory and Applications, John Wiley and Son, 1989.
10. Serpone, Nick., Pelizzetti, Ezio., Photocatalysis; Fundamentals and Application, a Wiley-Interscience Publication, Canada, 1989.
11. Doede, C. M., and Walker, C. A., “Photochemical Engineering”, Chemical Engineering, pp.159-178, February, 1955.
12. 盧明俊, 「危害性有機物之催化光分解技術」, 工業污染防治第四期, 81年10月.
13. Skoog, D. A., and West, D. M., Fundamentals of Analytical Chemistry, CBS College Publishing 4th ED. Pp528-529.
14. Zafiriou O. C. et. al., “Photochemistry of Natural Water”, E. S. & T. Vol.18, No. 12, p.358-371, 1984.
15. 杜玫芬, 安丹在二氧化鈦懸浮溶液中之催化光分解反應, 國立交通大學環境工程研究所碩士論文, 1995.
16. Krishna, J. G., et al, “Fate of the Variously Labeled Methyl- and Dimethyl-carbamate-Cl4 Insecticide Chemicals in Rates”, 1965.
17. Sakata T. and Kawai T., Energy Resources through Photochemistry and Catalysis Chapter 10 : Photosynthesis and Photocatalysis with Semiconductor Powder, Academic Press, 1983.
18. 胡振國譯,半導體元件與技術物理,全華圖書公司,民國78年.
19. 黃振麟譯,半導體物理導論,徐氏基金會,民國80年.
20. 王玉珍,半導體,亞東書局,民國81年.
21. Bard, A. J.; Faulkner, L. R. Electrochemical Methods Fundamentals and Applications. John Wiley & Sons, New York, 1980; 629-642.
22. Pralrie, M. R.; Evans, L. R. ; Stange, B. M.; Martinez, S. L. An Investigation of TiO2 photocatalysis for the Treatment of Water Contaminated with Metals and Organic Chemicals. Environ. Sci. Technol. 1993, 27, 1776-1782.
23. Harry O. Finkdea (Ed.), Semiconductor Electrodes, P.2, Elsevier Science Publishing Co. Inc. New York(1998).
24. G.Prasad, N. N. Rao ,and O. N. Srirastava, Int. J. Hydrogen Energy, 13, 7(1988)399.
25. T. R. N. kutty, L. Gorrathi Devi, and M. Arudaithai, Solar Energy Materials, 20(1990)307.
26. G. Blandeau, M. Froelicher, M. Fronent, A. Hugot-le Gott, and J. Zerbino, J. Electrochem,Soc,126,9(1979)1592.
27. Yasumichi Matsumoto, Jun-ichi Kurimoto, Tateki Shimizu, and Eichi Sato, J. Electrochem. Soc., 128, 5(1981)1040.
28. Alain Mannier and Jan Augustynski, J. Electrochem. Soc., 127, 7(1980)1576.
29. H. Paul Maruska and Amal K. Ghosh , Solar Energy Materials, 1 (1979)237.
30. P. Salvador, Solar Energy Materials, (1980)413.
31. T. R. N. Kutty and M. Arudaithai, Int. J. Hydrogen Energy, 15, 9(1990)621.
32. Hirofumi Kikkawa, Brian O’regan, and Marc A. Anderson, J. Electroanal. Chem. 309(1991)91.
33. A. Hagfeld and M. Gratzel, Chem. Rev. 95(1995)49-68.
34. A. L. Linsebigler, G. Lu, and J. T. Yates, Jr., 95(1995)735-758.
35. K. Hashimoto and A. Fujishima, 日本陶瓷 31(1996)815-820.
36. A. Yasaumori, ibid, 31(1996)821-824.
37. M. A. Butler and D. S. Ginley, "Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities", J. Electrochem. Soc., Vol.125, No.2, p.228 (1978).
38. M. A. Butler and D. S. Ginley, “Review: Principles of Photoelectrochemical, solar energy conversion”, J. Mater. Sci., Vol.15, p.1(1980).
39. A. J. Bard and M. S. Wrighton, "Thermodynamic potential for the anodic dissolution of n-type semiconductors", J. Electrochem. Soc., Vol.124, No.11 p.1706 (1977).
40. J. Schmets, J. V. Muylder and M. Pourbaix, "Atlas of electrochemical equilibria in aqueous solution", Marcel Pourbaix, section 8.1, p.213 (1974).
41. L. M. Sheppard, New Ceramics on the Horizon, Mat. Eng., July(1984).
42. Sheperd and Etheridge, Sunrise Minerals, The AIMM Bull., No.8, 1984, pp.41-43.
43. Per Kofstad, “Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides”, John Wiley & Sons, Inc., New York (1972).
44. L. G. Berry and B. Mason, Mineralogy, 1978.
45. Gordon Johnson and W. A. Weyl, “Influence of minor additions on color and electrical properties of Rutile”, J. Am. Ceram. Soc., Vol.32, No.12, p398(1949).
46. C. G. Bergeron and S. H. Risbud, Introduction to Phase Equilibria in Ceramics, The American Ceramic Society, Inc., 1984.
47. J. Augustynski, Electrochim. Acta38,p 43(1993).
48. A. Wahl, M. Ulmann, A. Carroy, B. Jermann, M. Dolata, P. Kedzierzawski, C. Chatelain, A. Monnier and J. Augustynski, J. Electroanal. Chem. 396, p41(1995).
49. V. Augugliaro, L. Palmisano, A. Sclafani, C. Minero and E. Pelizzetti, Toxicol. Environ. Chem. 16, p89(1988).
50. A. Sclafani, L. Palmisano and M. Schiavello, J. Phys. Chem. 94, p829(1990).
51. A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev. 95, pp.735-758(1995)
52. H. Gerischer, "Metal and Semiconductor electrode processes", H. C. Gatos, ed., John Wiley & Sons, Inc. (1960).
53. C. Stalder and J. Augustynski, "Photoasisted oxidation of water at beryllium-doped polycrystalline TiO2 electrodes", J. Electrochem. Soc., Vol.126, No.11, p.2007 (1979).
54. J. F. Houlihan, et al., "Doped polycrystalline TiO2 electrodes for the photo-assisted electrolysis of water", Mat. Res. Bull. Vol.13, p.1205 (1978).
55. G. Campet, et al., "Photoelectronic processes in transition-element doped n-type TiO2 electrodes", Mat. Res. Bull., Vol.15, p.1135 (1980).
56. Y. Matsumoto, et al., "Photoelectrochemical properties of polycrystalline TiO2 doped with 3d transition metals", J. Electrochem. Soc., Vol.128, No.5, p.1040 (1981).
57. R. H. Wilson, et al., "Characterized semiconductor electrodes I: Effect of processing variables on the photoelectrochemical properties of single crystal TiO2 (Rutile)", J. Electrochem. Soc., Vol.126, No.5, p.844 (1979).
58. P. A. Kohl, et al., "Semiconductor electrodes XI: Behavior of n- and p-type single crystal semiconductors covered with thin film n-TiO2 films”, J. Electrochem. Soc., Vol.124, No.2, p.225 (1977).
59. K. L. Hardee and A. J. Bard, "Semiconductor electrodes X: Photoelectrochemical behavior of several polycrystalline metal oxide electrodes in aqueous solutions", J. Electrochem. Soc., Vol.124, No.2, p.215 (1977).
60. S. N. Frank and A. J. Bard, "Semiconductor electrodes. II: Electrochemistry at n-type TiO electrodes in acetonitrile solutions", J. Electrochem. Soc., vol.125, No.2, p.246 (1978).
61. R. N. Noufi, et al., "Semiconductor electrodes XIV: Electrochemistry and electroluminescence at n-type TiO2 in aqueous solutions", J. Electrochem. Soc., Vol.125, No.2, p.246 (1978).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top