跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/05 19:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:康家維
研究生(外文):Chia-Wei Kang
論文名稱:分數延遲系統之回解與應用
論文名稱(外文):DECONVOLUTION OF THE FRACTIONAL DELAY SYSTEM AND ITS APPLICATION
指導教授:劉皆成
指導教授(外文):Prof. Jie-Cherng Liu
學位類別:碩士
校院名稱:大同大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:82
中文關鍵詞:分數延遲濾波器
外文關鍵詞:fractional delay filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
分數延遲濾波器是一種在不改變取樣頻率下,使輸入的離散訊號
產生非整數延遲的一種裝置,許多領域需運用到這樣的功能,如通
訊、語音訊號處理等等。在本篇論文中,我們從新探討了如何以FIR
的設計技巧來近似部分延遲濾波器,而近似的技巧是以多項式為基礎
的內插法。我們所使用的多項式為基礎的內插法,是線性、三次方
Lagrange 和變參數三次方內插法。而且我們還提出了一個技巧反轉
分數延遲濾波器的處理過程。我們稱為回解器。最後,我們將此分數
延遲濾波器和回解器應用在浮水印。
Fractional delay filter is a device that delays the discrete-time input signal in a noninteger sampling interval, when the sampling rate is unchanged. It finds applications in numerous fields of signal processing, including communications, speech processing, and so on. In this thesis, we present a review of FIR filter design techniques for bandlimited approximation of a fractional delay filter, and this technique is based on polynomial-based interpolations. The polynomial-based interpolation methods we used are linear interpolation, cubic Lagrange interpolation and variable parameter cubic interpolation. And we also proposed a technique to invert the process of the fractional delay filter. We call it "deconvolver." Finally, we use this fractional delay filter and deconvolver to implement watermarking.
CONTENTS
ABSTRACT (in Chinese)………………………………………………V
ABSTRACT (in English)……………………………………………VI
ACKNOWLEDGEMENT……………………………………………VII
CONTENTS…………………………………………………………VIII
LIST OF FIGURES…………………………………………………XI
LIST OF TABLES…………………………………………………XIV
Page
CHAPTER 1 INTRODUCTION……………………………………1
CHAPTER 2 POLYNOMIAL-BASED FD FILTER…………………3
2.1 Preliminaries………………………………………………………3
2.1.1 Notation and concepts………………………………………3
2.1.2 Ideal solution…………………………………………………6
2.1.3 Least squared integral error
design……………………………8
2.1.4 General least squares FIR approximation of a complex
frequency response……………………………………………11
2.2 Farrow Structure For Fractional Delay FIR
Filters……………….15
2.2.1 Introduction of the Farrow
structure…………………………15
2.2.2 Coefficients computation of the Farrow
structure…………16
2.2.3 Discussion……………………………………………………19
2.3 FD Filter Implementation By Using Lagrange Interpolation
(Maximally Flat FD FIR Filter)…………………………………20
2.3.1 Lagrange interpolation for fractional delay approximation
(maximally flat FD FIR filter)…………………………………..20
2.3.2 The Farrow structure of Lagrange FD filter…………………23
2.3.2.1 Corresponding to linear interpolation…………………..25
2.3.2.2 The cubic Lagrange interpolation………………………27
2.3.2.3 The variable parameter cubic interpolation………… …30
2.4 Summary of Polynomial-based FD Filters……………………….35
CHAPTER 3 A MICROPROCESSOR-BASED DECONVOLVER..36
3.1 Thoughts On The Inverting Process Of The Fractional
Delay Filter……………………………………………………36
3.2 Calculation Of The Fractional Delay d(n) By
Using A Mathematical Procedure………………………………39
3.3 Some Examples Of The Internal Operations Of
Microprocessor-based Deconvolvers……………………………42
3.4 The Polynomial Approximation Technique For The Impulse
Response hd(n) Of The Fractional Delay Filter………45
3.5 Simulation Of The Inverting Process Of The General
Fractional Delay Filter…………………………………………47
3.6 Summary Of Microprocessor-based Deconvolver………………52
CHAPTER 4 A WATERMARKING TECHNIQUE BASED
ON FRACTIONAL DELAY FILTERS AND
DECONVOLVERS……………………………………53
4.1 Introduction Of Watermarking……………………………………53
4.2 Implementation Of Watermarking By Using Fractional
Delay Filters………………………………………………………54
4.2.1 Proposed watermarking approaches…………………………55
4.2.1.1 Watermarking embedding method………………………55
4.2.1.2 Watermarking extracting method………………………56
4.2.2 Simulation results……………………………………………57
4.3 Discussion………………………………………………………66
CHAPTER 5 CONCLUSIONS………………………………………67
REFERENCE…………………………………………………………69
REFERENCES
[1] Tiom I. Lakkso, Vesa Välimäki, Matti Karjalainen, and Unto. Laine, “Splitting the unit delay,” IEEE Signal Processing Magazine, vol. 13, no. 1, pp. 30-60, Jan. 1996.
[2] C.W. Farrow, “A continuously variable digital delay element,” in Proc. IEEE Int. Symp. Circuit & syst., Espoo, Finland, Jane 6-9, 1998, pp. 2641-2645.
[3] G.-S. Liu and C.H. Wei, “Programmable fractional sample delay filter with Lagrange interpolation,” Electronics Letters, vol. 40, no. 3, pp. 551-558, Mar. 1992.
[4] Peter J. Kootsookos and Robert C. Williamson, ”FIR approximation of fractional sample delay system,” IEEE Trans. Circuits Syst.-II: Analog and Digital Signal Processing, vol. 3, pp. 269-271, Mar. 1996.
[5] Vesa Välimäki, “A new filter implementation strategy for Lagrange interpolation,” in Proc. IEEE int. Symp. Circuits and Systems (ICASSP-95), vol. 1, pp. 361-364, Seattle, Washington, April 29-May 3, 1995.
[6] H. Zhang, “Interpolator for all-digital receivers,” Electronics Letters, vol. 33, no. 4, pp. 261-262, Feb. 13th. 1997.
[7] F.M. Gradner, “Interpolation in digital modem-Part I : Fundamentals,” IEEE Trans. Commun., vol. 41, pp. 502-508, Mar. 1993.
[8] Lars Eurp, Flody M. Gradner and Robert A. Harris, “Interpolation in digital modem-Part II : interpolation and performance,” IEEE Trans. Commun., vol. 41, pp.998-1008, June 1993.
[9] J. Vesma and T. Saramäki, “Optimization and efficient implementation for fractional delay FIR filters,” in Proc 1995 IEEE Int. Conf. Electronics, Circuits, Syst. (Rodos, Greece), pp. 546-549, Oct. 1996.
[10] J. Vesma and T. Saramaki, “Interpolation filters with arbitrary frequency response for all-digital receivers,” in Proc IEEE Int. Conf. Electronics, Circuits, Syst. ,Atlanta, GA, pp. 568-571. May 1996.
[11] C. S. Burrus, A. W. Sowieto, and R.A. Gpoinath, “Least squared error FIR filter design with transition band,” IEEE Trans. Signal Processing, vol. 40, no. 6, pp. 1327-1340, Jane 1992.
[12] G.-S. Liu and C.H. Wei, “A new variable fractional sample delay filter with nonlinear interpolation,” IEEE Trans. Circuits Syst.-II : Analog and Digital Signal Processing, vol. 39, no.2, pp. 123-126, Feb. 1992.
[13] G. Oetken, “A new approach for the design of digital interpolating filters,” IEEE Trans. Acoust. Speech Signal Processing, vol. 27, no. 6, pp. 637-643, Dec. 1979.
[14] Chiou-Ting Hsu and Ja-Ling Wu, “Hidden digital watermarks in images,” IEEE trans. on image processing, vol. 8, no.1, pp.58-68, Jan. 1999.
[15] Chiou-Ting and Ja-Ling Wu, “Multiresolution watermarking for digital images,” IEEE Trans. Circuits Syst. II, vol. 45, pp. 1097—1101, Aug. 1998.
[16] Min-Shiang Hwang, Chin-Chen Chang and Kuo-Feng Hwang, “A watermarking technique based on one-way hash functions,” IEEE Tran. on Consumer Electronics, vol. 45, no2, pp. 286-294, May 1999.
[17] M.Kutter and F.A.P.Petitcolas, “A fair benchmark for image watermarking, system,” Proceedings of SPIE, vol. 3657, Jan. 1999.
[18] Xia-mu Niu, Zhe-ming Lu and Sheng-ho Sun, “Digital watermarking of still images with gray-level digital watermarks,” IEEE Trans. On Consumer Electronics, vol. 46, no. 1, Feb. 2000
[19] H. Berghel and L. O’Gorman, “Protecting ownership rights through digital watermarking,” Computer Mag., pp. 101-103, July 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文