跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 09:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫偉孜
研究生(外文):Sun, Wei-Tzu
論文名稱:p53下游基因DDA3之結合蛋白的選殖與研究
論文名稱(外文):Cloning and Characterization of Associated Proteins for DDA3, a p53 Target Gene
指導教授:陳芬芳陳芬芳引用關係
指導教授(外文):Wang, Fung-Fang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:63
中文關鍵詞:腫瘤抑制基因mRNA差異表現法
外文關鍵詞:p53tumor suppressor genemRNA differential displayPXXP motifSH3 domain53BP2yeast two-hybrid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
p53是一個腫瘤抑制基因, 其主要功能在維持細胞基因體的完整性。 本實驗室曾利用mRNA差異表現法找到兩個可以受p53活化的基因, mDDA1及mDDA3。 同時在EST database中找到了mDDA3在人類的相似物, hDDA3。 mDDA3與hDDA3的胺基酸序列中分別含有六個及三個的PXXP motif, 而且都含有一個可能會形成coiled-coil region的序列。 由於coiled-coil region與PXXP motif都可以媒介與其他蛋白質的相互結合, 所以我們以yeast two-hybrid的方法嘗試找尋與DDA3結合的蛋白, 希望能藉由對DDA3結合蛋白的研究而對DDA3的功能有進一步的瞭解。
以yeast two-hybrid的方法, 我們找到了許多可能與DDA3相結合的蛋白, 其中之一為小鼠53BP2 (m53BP2)。 進一步的研究發現mDDA3能夠與m53BP2, 人類53BP2 (h53BP2) 以及其相似物KIAA0771的蛋白質之C端相結合, 但無法與全長之h53BP2以及其相似物KIAA0771結合。 hDDA3則能夠與這些蛋白的C端以及全長相結合。 而且將N端包含兩個PXXP的序列刪除後的hDDA3仍然能夠與53BP2相結合, 表示DDA3與53BP2的結合不需要其N端的兩個PXXP motif。
對hDDA3與h53BP2在細胞內分佈的研究發現hDDA3表現在細胞質以及細胞核中, 而且在核中呈絲狀結構。 53BP2在細胞內則散佈於細胞質中。 若將hDDA3與53BP2同時表現在細胞內, 則可以看到53BP2有部份分佈於細胞核附近。
53BP2可以增強p53的轉錄活化功能。 我們利用luciferase assay發現53BP2可以將p53的轉錄活化功能增加至2.5倍, 但hDDA3對53BP2此一作用似乎沒有影響。 所以hDDA3與53BP2相結合所產生的影響尚需繼續的研究。

p53 is a tumor suppressor gene that helps to maintain the integrity of the genome. Through the method of mRNA differential display, we have previously found two p53 inducible mouse genes, mDDA1 and mDDA3. The human homologue of mDDA3 has been found and designated hDDA3. The amino acid sequences of hDDA3 and mDDA3 contain 3 and 6 PXXP motifs respectively, and both include a putative coiled-coil region. Since PXXP motif and coiled-coil region may mediate protein-protein interactions, we utilized a yeast two-hybrid assay to screen for mDDA3-interacting proteins from mouse brain cDNA library.
Out of several mDDA3-interacting proteins, 53BP2 is of particular interest. Further yeast two-hybrid analyses have revealed that mDDA3 interacts with the C-terminus of mouse and human 53BP2 and its human homologue KIAA0771 but failed to interact with the full-length 53BP2 proteins and KIAA0771. hDDA3 can interact with both the C-terminus and full length of 53BP2 proteins and homologues. We also found that deletion of the N-terminal region containing 2 PXXP motifs of hDDA3 does not interfere with its 53BP2 binding ability.
Immunofluorescence studies revealed that hDDA3 is localized in both the cytoplasm and the nucleus. 53BP2 is present mainly in the cytoplasm but when co-expressed with hDDA3, a fraction of 53BP2 protein seems to relocate to the perinuclear region.
53BP2 has been found to stimulate the transactivation activity of p53. But utilizing a luciferase assay, hDDA3 didn't seem to affect the stimulation of p53 by 53BP2. The functional significance of 53BP2-hDDA3 interaction thus remains to be elucidated.
中文摘要……………………………………1
英文摘要……………………………………2
壹. 緒論……………………………………3
貳. 實驗材料與方法………………………11
參. 實驗結果………………………………25
肆. 討論……………………………………33
伍. 圖表……………………………………40
陸. 參考文獻………………………………57

Adamson JG, Zhou NE, Hodges RS (1993). Structure, function and application of the coiled-coil protein folding motif. Curr. Opin. Biotechnol. 4(4):428-437
Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y (1998). Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281(5383):1674-1677
Bayle JH, Elenbaas B, Levine AJ (1995). The carboxyl-terminal domain of the p53 protein regulates sequence-specific DNA binding through its nonspecific nucleic acid-binding activity. Proc. Natl. Acad. Sci. U. S. A. 92 (12): 5729-5733
Buckbinder L, Talbott R, Velasco-Miguel S, Takenaka I, Faha B, Seizinger BR, Kley N (1995). Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377(6550):646-649
Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD (1998). Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281(5383):1677-1679
Estojak J, Brent R, Golemis EA (1995). Correlation of two-hybrid affinity data with in vitro measurements. Mol Cell Biol 15(10):5820-5829
Fu L, Minden MD, Benchimol S (1996). Translational regulation of human p53 gene expression. EMBO J. 15(16):4392-4401
Fu L, Benchimol S (1997). Participation of the human p53 3'UTR in translational repression and activation following gamma-irradiation. EMBO J. 16 (13): 4117-4125
Fuchs SY, Adler V, Buschmann T, Wu X, Ronai Z (1998). Mdm2 association with p53 targets its ubiquitination. Oncogene 17(19): 2543-2547
Gorina S, Pavletich NP (1996). Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 274(5289):1001-1005
Gu W, Shi XL, Roeder RG (1997). Synergistic activation of transcription by CBP and p53. Nature 387 (6635):819-823
Gyuris J, Golemis E, Chertkov H, Brent R (1993). Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75(4):791-803
Hupp TR, Sparks A, Lane DP (1995). Small peptides activate the latent sequence-specific DNA binding function of p53. Cell 83 (2): 237-245
Israeli D, Tessler E, Haupt Y, Elkeles A, Wilder S, Amson R, Telerman A, Oren M (1997). A novel p53-inducible gene, PAG608, encodes a nuclear zinc finger protein whose overexpression promotes apoptosis. EMBO J. 16 (14): 4384-4392
Iwabuchi K, Li B, Bartel P, Fields S (1993). Use of the two-hybrid system to identify the domain of p53 involved in oligomerization. Oncogene 8 (6): 1693-1696
Iwabuchi K, Bartel PL, Li B, Marraccino R, Fields S (1994). Two cellular proteins that bind to wild-type but not mutant p53. Proc. Natl. Acad. Sci. U. S. A. 91(13):6098-6102
Iwabuchi K, Li B, Massa HF, Trask BJ, Date T, Fields S (1998). Stimulation of p53-mediated transcriptional activation by the p53-binding proteins, 53BP1 and 53BP2. J. Biol. Chem. 273(40):26061-26068
Lakin ND, Hann BC, Jackson SP (1999). The ataxia-telangiectasia related protein ATR mediates DNA-dependent phosphorylation of p53. Oncogene 18(27):3989-3995
Levine AJ (1997). p53, the cellular gatekeeper for growth and division. Cell 88(3):323-331
Li R, Waga S, Hannon GJ, Beach D, Stillman B (1994). Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair. Nature 371(6497):534-537
Lo PK, Chen JY, Lo WC, Chen BF, Hsin JP, Tang PP, Wang FF (1999). Identification of a novel mouse p53 target gene DDA3. Oncogene 18(54):7765-7774
Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC (1994). Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9(6):1799-1805
Mosner J, Mummenbrauer T, Bauer C, Sczakiel G, Grosse F, Deppert W (1995). Negative feedback regulation of wild-type p53 biosynthesis. EMBO J. 14(18):4442-4449
Naumovski L, Cleary ML (1996). The p53-binding protein 53BP2 also interacts with Bc12 and impedes cell cycle progression at G2/M. Mol. Cell. Biol. 16(7):3884-3892
Nie Y, Li HH, Bula CM, Liu X (2000). Stimulation of p53 DNA binding by c-Abl requires the p53 C terminus and tetramerization. Mol. Cell. Biol. 20(3):741-748
Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (2000). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288(5468):1053-1058
Pederson T (2000). Half a century of "the nuclear matrix". Mol. Biol. Cell 11(3):799-805
Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H (1997). Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277 (5331): 1501-1505
Petrocelli T, Poon R, Drucker DJ, Slingerland JM, Rosen CF (1996). UVB radiation induces p21Cip1/WAF1 and mediates G1 and S phase checkpoints. Oncogene 12(7):1387-1396
Prives C. (1998). Signaling to p53: breaking the MDM2-p53 circuit. Cell 95 (1): 5-8
Saksela K, Cheng G, Baltimore D (1995). Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J. 14(3):484-491
Schneider E, Montenarh M, Wagner P (1998). Regulation of CAK kinase activity by p53. Oncogene 17(21):2733-2741
Shieh SY, Ikeda M, Taya Y, Prives C (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91(3): 325-334
Shieh SY, Taya Y, Prives C (1999). DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. EMBO J. 18(7):1815-1823
Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E, Kastan MB (1997). DNA damage induces phosphorylation of the amino terminus of p53. Genes & Dev. 11(24):3471-3481
Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ, Wahl GM (1999). A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18 (6):1660-1672
Thukral SK, Blain GC, Chang KK, Fields S (1994). Distinct residues of human p53 implicated in binding to DNA, simian virus 40 large T antigen, 53BP1, and 53BP2. Mol. Cell. Biol. 14 (12): 8315-8321
Thut CJ, Chen JL, Klemm R, Tjian R (1995). p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science 267 (5194):100-104
Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, Taya Y, Prives C, Abraham RT (1999). A role for ATR in the DNA damage-induced phosphorylation of p53. Genes & Dev. 13(2):152-157
Venot C, Maratrat M, Dureuil C, Conseiller E, Bracco L, Debussche L (1998). The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. EMBO J. 17(16):4668-4679
Vogeli-Lange R, Burckert N, Boller T, Wiemken A (1996). Rapid selection and classification of positive clones generated by mRNA differential display. Nucleic Acids Res. 24(7):1385-1386
Walker KK, Levine AJ (1996). Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc. Natl. Acad. Sci. U. S. A. 93 (26):15335-15340
Yang JP, Hori M, Takahashi N, Kawabe T, Kato H, Okamoto T (1999). NF-kappaB subunit p65 binds to 53BP2 and inhibits cell death induced by 53BP2. Oncogene 18(37):5177-5186

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top