跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 01:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:夏國強
研究生(外文):Kuo-Chiang Hsia
論文名稱:大腸桿菌素與胞膜間區蛋白質交互作用之研究
論文名稱(外文):Protein-Protein Interaction between Colicin E7 and the Proteins in the Periplasm of E. coli
指導教授:翟建富翟建富引用關係
指導教授(外文):Kin-Fu Chak
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:123
中文關鍵詞:大腸桿菌素胞膜間區大腸桿菌
外文關鍵詞:ColicinperiplasmE. coli
相關次數:
  • 被引用被引用:4
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大腸桿菌素是去氧核醣核酸型式的細菌毒素。當大腸桿菌遭遇環境壓力時會分泌此毒素殺害其它細菌以增加其在此環境中的競爭力。當大腸桿菌素在細胞中被轉譯時,會同時產生一免疫蛋白質與毒性區域結合以中和其毒性因而避免此毒素對菌體自身所造成傷害。經轉譯後,大腸桿菌素與免疫蛋白質會以異體複合物的形式分泌到細胞外。在目前已知大腸桿菌素與免疫蛋白質的解離平衡常數約為10-14至10-17。因此在大腸桿菌素入侵敏感細胞的過程中如何與免疫蛋白質分離?大腸桿菌素如何單獨進入敏感細胞中釋放其細胞毒性?這等都是懸而未決和是一個值得研究的課題。
在本篇報告中發現,只有大腸桿菌素中的毒性區域才能進入菌體中,顯示此毒素在進入細胞的過程中是經過蛋白質切割的過程。進一步發現在胞膜區間(periplasmic space)中有部份蛋白質會專一性的作用在大腸桿菌素上。經由蛋白質定序與電腦比對發現這些會與大腸桿菌素作用的蛋白質包括:有glucose-1-phosphatase,maltose binding protein E與flagellin等,所以此等蛋白質可能有參與桿菌素在胞膜中位移(translcoation)的現象。此外,經由一些實驗也發現免疫蛋白會在胞膜區間中堆積,因此我們認為免疫蛋白質會在胞膜區間中與大腸桿菌素分離造成了免疫蛋白堆積的現像。
總合以上的結果,我們對於去氧核醣核酸型式的大腸桿菌素進入菌體中的移位過程提出了一個模型。也就是大腸桿菌素與免疫蛋白複合物在與敏感細胞結合後,在胞膜區間中的某些蛋白質會將大腸桿菌素的C端毒性區域切割,因而促使C端的毒性區域能與免疫蛋白質分離。此外,由於胞膜區間有較低的pH值,造成毒性區域結構上的些微變化,這便是使得免疫蛋白質得以分離的其中一種原因。在胞膜間區分離後的毒性區域,再經過未知的機制穿越內膜而進入細胞中以執行其細胞毒性。
Colicins of DNase type are bacteriocin which released from E. coli during environmental stress. These proteins are inactivated upon the binding of immunity protein to its toxicity domain. Recent study indicated a high affinity binding (Kd = 10-14 — 10-17 M) between colicins and their immunity proteins (Col-Imm). These complexes, under normal conditions, do not dissociate easily. However, only colicins dissociated from Col-Imm complex which enter and kill the target cells. The mechanism attributes to dissociation of Col-Imm complex prior to enter the cytoplasm remains unknown. Our recent studies revealed that colicin must be cleaved prior to launch its cytotoxic effect and only the fragment containing toxicity domain can be translocated into target cell. Certain proteins in the periplasmic space bind specifically to colicin. Protein sequencing results showed that proteins in the periplasmic region specifically interact with ColE7 include glucose-1-phosphatase, maltose binding protein, flagellin, indicating that these proteins may play an important role for translocating colicin through the membrane. Since immunity protein is accumulated in the periplasmic space, it''s accumulation may be attributed to the dissociation of ColE7-Imm complex in the periplasmic space. Thus, a possible mechanism for colicin is proposed. After the binding of ColE7-Imm complex to its target cell, toxicity domain in the C terminal of colicin will be cleaved by certain periplasmic proteins leading to the dissociation of Imm protein with the toxicity domain in periplasmic space. Moreover, the low pH condition in periplasmic space might play a role for the dissociation of toxicity domain and immunity protein. Eventually, the processed toxicity domain translocates into cytoplasm through the inner membrane by an unknown mechanism to launch its cytotoxic effect in sensitive cells.
英文摘要…………………………………………….……………………Ⅲ
壹、 序論…………………………………………………………….1 ~ 12
一、背景介紹………………………………………………………1
(一)大腸桿菌素ColE7基因與其操縱子上其它基因的功能……..1
(二)大腸桿菌素ColE7基因與其操縱子的調控…………………..2
(三)大腸桿菌素的分類……………………………………………..3
(四)大腸桿菌素的作用機制………………………………………..4
二、大腸桿菌素與免疫蛋白之酵素動力學研究概況……………….…4
(一)大腸桿菌素與免疫蛋白之平衡分解常數研究………………..5
(二)大腸桿菌素及免疫蛋白質之間的作用力研究………………..5
三、大腸桿菌素進入敏感細胞之途徑……………………………….…6
(一)Tol系統中各個蛋白質的功能…………………………………7
(二)大腸桿菌素向細胞內運輸的過程……………………….…….8
四、大腸桿菌素運輸至細胞體外之途徑………………………….……9
五、大腸桿菌素的重要性…………………………………….…….…..10
六、實驗目的………………………………………………….………...11
貳、 實驗材料與方法……………………………………………..13 ~ 46
一、 細菌菌株……………………………………………………..…… 13
二、 質體及其建構………………………………………………..…… 13
三、 化學藥品與酵素……………………………………………..…… 14
四、 一般研究的方法…………………………………………….. 15 ~ 26
(一)細菌培養……………………………………………….……... 15
(二)在大腸桿菌中質體DNA之分離與純化……………..…….... 16
(三)大腸桿菌中全部DNA (total genomic DNA) 之分離與純化..18
(四)聚合鏈鎖反應……………………………………………... 19
(五)限制的切割……………………………………………..…. 20
(六)CIAP處理……………………………………………………..20
(七)Klenow反應處理……………………………………………...21
(八)DNA的連接反應………………………………………..…… 21
(九)洋菜膠體電泳……………………………...…………………. 22
(十)從洋菜膠中回收DNA片段及純化…………...……………... 23
(十一)細菌的轉形作用……………………………………...……. 24
(十二)選殖菌株之篩選-細菌質體之快速篩選法……………...… 26
五、一般蛋白質之純化……………………………..……………… 26 ~ 39
(一)大腸桿菌素與免疫蛋白之純化………………………………. 26
(二)大腸桿菌胞膜區間蛋白質之純化與分類分離………....……. 30
(三)蛋白質含量之測定……………………………………………..33
(四)蛋白質電泳……………………………………………………..34
(五)蛋白質染色……………………………………………………..38
六、胞膜間區蛋白質與大腸桿菌素互動之研究……………………39 ~ 41
(一)分子篩管柱……………………………………………………..39
(二)生物感應器……………………………………………………..39
七、西方墨點測試………………………………………………………...41
八、遠西墨點測試………………………………………………………...42
九、N端蛋白質序列分析…………….…………………………………...43
十、進入菌體內大腸桿菌素片段的純化………………………………..44
十一、胞膜間區蛋白質與大腸桿菌素作用之實驗方法………….…….44
十二、菌體外與菌體內免疫蛋白的純化………………………….44 ~ 46
(一)在上清液中免疫蛋白的純化…………………………….……44
(二)在菌體內免疫蛋白的純化…………………………………….45
(三)在胞膜間區中免疫蛋白的純化……………………………….46
參、 結果…………………………………………….…..……. 47 ~ 57
一、大腸桿菌素ColE7經胞膜位移進入細菌內最終產物的探討…… 47
二、胞膜間區蛋白質與大腸桿菌素ColE7互動之研究………… 48 ~ 52
(一)胞膜間區蛋白質與大腸桿菌素ColE7的作用環境…………..49
(二)胞膜間區蛋白質分類分離物與大腸桿菌素ColE7作用之研究……………………………………………………………....52
三、胞膜間區中能與大腸桿菌素ColE7作交互作用之蛋白質的鑑定與純化………………………………………………………………….53
四、大腸桿菌素ColE7內金屬離子對於胞膜間區蛋白質之影響…….55
五、免疫蛋白與大腸桿菌素ColE7分離後所在的位置………….56 ~ 58
(一)在細胞外免疫蛋白存在的情況………………………………..57
(二)在細胞內免疫蛋白存在的情況………………………………..57
(三)在細胞間區免疫蛋白存在的情況……………………………..57
肆、 討論……………………………………………………….. 59 ~ 57
一、大腸桿菌素ColE7進入細胞的形式…………………………...…. 60
二、胞膜間區蛋白質對於大腸桿菌素ColE7在胞膜位移過程中的影響……………………………………………………………….61 ~ 62
(一)胞膜間區蛋白質與大腸桿菌素ColE7專一性的作用………..62
(二)胞膜間區蛋白質與大腸桿菌素ColE7作用環境之探討……...63
三、胞膜間區蛋白質分類分離物與大腸桿菌素ColE7作用情況之研究…………………………………………………………………….64
四、與大腸桿菌素ColE7作用之胞膜間區蛋白質……………….64 ~ 66
(一) Glucose-1-phosphatase的基本性質與可能功能………...……65
(二) Maltose binding protein E的基本性質與可能功能……...……66
(三) Flagellin的基本性質與可能功能…………………………..…66
(四)Outer membrane porin F的基本性質與可能功能……………..67
五、大腸桿菌素ColE7內金屬離子與免疫蛋白在大腸桿菌素運輸中所扮演的色…………………………………………………..……68~ 71
(一)大腸桿菌素ColE7內金屬離子對於此蛋白質運輸的影響…..69
(二)免疫蛋白與大腸桿菌素ColE7分離後所在之位置…………..70
六、大腸桿菌素與免疫蛋白複合物進入菌體內的位移模型………….72
伍、圖表…………………………………………………………… 73 ~ 114
陸、參考文獻……………………………………………………115 ~ 123
Beacham IR, Garrett S. (1980). Isolation of Escherichia coli mutants (cpdB) deficient in periplasmic 2'':3''-cyclic phosphodiesterase and genetic mapping of the cpdB locus. J Gen Microbiol 119:31-34.
Belin P, Boquet PL. (1993). A second gene involved in the formation of disulfide bonds in proteins localized in Escherichia coli periplasmic space. C R Acad Sci III 316:469-473.
Bouveret E, Rigal A, Lazdunski C, Benedetti H. (1997). The N-terminal domain of colicin E3 interacts with TolB which is involved in the colicin translocation step. Mol Microbiol 23:909-920.
Bouveret E, Rigal A, Lazdunski C, Benedetti H. (1998). Distinct regions of the colicin A translocation domain are involved in the interaction with TolA and TolB proteins upon import into Escherichia coli. Mol Microbiol 27:143-157.
Brandao-Neto J, Bell WR. (1994). Characteristics of zinc binding to human red blood cell membranes. Am J Hematol 45:1-9.
Briggs MS, Gierasch LM. (1986). Molecular mechanisms of protein secretion: the role of the signal sequence. Adv Protein Chem 38:109-180.
Buckle A M, Schreiber G, Fersht A R. (1994). Protein-protein recognition: Crystal structure analysis of a barnase-barstar complex at 2.0-Angxtrom resolution. Biochem 33: 8878-8889.
Cavard D, Baty D, Howard SP, Verheij HM, Lazdunski C. (1987). Lipoprotein nature of the colicin A lysis protein: effect of amino acid substitutions at the site of modification and processing. J Bacteriol 169:2187-2194.
Chak K F, Kuo W S, Lu F M, and James, R. (1991). Cloning characterization of the ColE7 plasmid. J Gen Microbiol 137: 91-100.
Chak K F, Safo M K, Ku W Y, Hsieh S Y and Yuan H S. (1996). The crystal-structure of the immunity protein of colicin E7 suggests a possible colicin-interacting surface. Proc Natl Acad Sci USA 93: 6437-6442.
Clavel T, Lazzaroni JC, Vianney A, Portalier R. (1996). Expression of the tolQRA genes of Escherichia coli K-12 is controlled by the RcsC sensor protein involved in capsule synthesis. Mol Microbiol 19:19-25.
Cowman A, Beacham IR. (1980). Molecular cloning of the gene (ush) from Escherichia coli specifying periplasmic UDP-sugar hydrolase (5''-nucleotidase). Gene 12:281-286.
Craig, N. L. and Robert, J. W. (1980). E. coli recA protein-directed cleavage of phage  repressor requires polynucleotide. Nature 283:26-30.
Dassa E, Boquet PL. (1985). Identification of the gene appA for the acid phosphatase (pH optimum 2.5) of Escherichia coli. Mol Gen Genet 200:68-73.
Davies JK, Reeves P. (1975).Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group A. J Bacteriol 123:102-117.
Davies JK, Reeves P. (1975). Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group A. J Bacteriol 123:96-101.
De Graaf FK, Klaasen-Boor P. (1977). Purification and characterization of a complex between cloacin and its immunity protein isolated from Enterobacter cloacae. Dissociation and reconstitution of the complex. Eur J Biochem 73:107-114.
Derouiche R, Benedetti H, Lazzaroni JC, Lazdunski C, Lloubes R. (1995). Protein complex within Escherichia coli inner membrane. TolA N-terminal domain interacts with TolQ and TolR proteins. J Biol Chem 270(19):11078-84.
Derouiche R, Gavioli M, Benedetti H, Prilipov A, Lazdunski C, Lloubes R. (1996). TolA central domain interacts with Escherichia coli porins. EMBO J 15:6408-6415.
DiMasi R D, White J C, Schnaitman C A and Bradbeer C. (1973). Transport of vitamin B12 in Escherichia coli: common receptor sites for vitamin B12 and the E colicins on the outer membrane of the cell envelope. J Bacteriol 115:506-573.
Duche D, Baty D, Chartier M, Letellier L. (1994). Unfolding of colicin A during its translocation through the Escherichia coli envelope as demonstrated by disulfide bond engineering. J Biol Chem 269:24820-24825.
Duplay P, Bedouelle H, Fowler A, Zabin I, Saurin W, Hofnung M. (1984). Sequences of the malE gene and of its product, the maltose-binding protein of Escherichia coli K12. J Biol Chem 259:10606-10613.
Evans LJ, Cooper A, Lakey JH. (1996). Direct measurement of the association of a protein with a family of membrane receptors. J Mol Biol 255:559-563.
Gaastra W, Oudega B, de Graaf FK. (1978). The use of mutants in the study of structure-function relationships in cloacin DF13. Biochim Biophys Acta 540:301-312.
Gennity J, Goldstein J, Inouye M. (1990). Signal peptide mutants of Escherichia coli. J Bioenerg Biomembr 22:233-269.
Gierasch LM. (1989). Signal sequences. Biochem 28:923-930.
Gottesman S, Stout V. (1991). Regulation of capsular polysaccharide synthesis in Escherichia coli K12. Mol Microbiol 5:1599-1606.
Hardy K G. (1975). Colicinogeny and related phenomena. Bacteriol Rev 39:464-515.
Hsieh S Y, Ko T P, Tseng M Y, Ku W Y, Chak K F and Yuan H S. (1997). A novel role of ImmE7 in the autoregulatory expression of ColE7 operon and indentification of possible ribonuclease active sites in the crystal structure of dimeric ImmE7. EMBO J 16:1444-1454.
Inouye H, Michaelis S, Wright A, Beckwith J. (1981). Cloning and restriction mapping of the alkaline phosphatase structural gene (phoA) of Escherichia coli and generation of deletion mutants in vitro. J Bacteriol 146:668-675.
Inukai, M., Ghrayeb, J., Nakamura, K. and Inouye, M. (1984). Apolipoprotein, an intermediate in the processing of the major lopoprotein of the Escherichia coli outer membrane. J Biol Chem 259:757-760.
Isnard M, Rigal A, Lazzaroni JC, Lazdunski C, Lloubes R. (1994). Maturation and localization of the TolB protein required for colicin import. J Bacteriol 176:6392-6396.
James R, Kleanthous C, Moore GR. (1996). The biology of E colicins: paradigms and paradoxes. Microbiol 142:1569-1580.
Kampfenkel K, Braun V. (1993). Membrane topologies of the TolQ and TolR proteins of Escherichia coli: inactivation of TolQ by a missense mutation in the proposed first transmembrane segment. J Bacteriol 175:4485-4491.
Krone WJ, de Vries P, Koningstein G, de Jonge AJ, de Graaf FK, Oudega B. (1986). Uptake of cloacin DF13 by susceptible cells: removal of immunity protein and fragmentation of cloacin molecules. J Bacteriol 166:260-268.
Lazzaroni JC, Portalier R. (1992). The excC gene of Escherichia coli K-12 required for cell envelope integrity encodes the peptidoglycan-associated lipoprotein (PAL). Mol Microbiol 6:735-742.
Lazzaroni JC, Vianney A, Popot JL, Benedetti H, Samatey F, Lazdunski C, Portalier R, Geli V. (1995). Transmembrane alpha-helix interactions are required for the functional assembly of the Escherichia coli Tol complex. J Mol Biol 246:1-7.
Levengood SK, Webster RE. (1989). Nucleotide sequences of the tolA and tolB genes and localization of their products, components of a multistep translocation system in Escherichia coli. J Bacteriol 171:6600-6609.
Lewin TM, Webster RE. (1996). Membrane insertion characteristics of the various transmembrane domains of the Escherichia coli TolQ protein. J Biol Chem 271:14143-14149.
Little J W and Mount D W. (1982). The SOS regulatory system of Escherichia coli. Cell 29:11-22.
Luirink J, van der Sande C, Tommassen J, Veltkamp E, De Graaf FK, Oudega B. (1986). Effects of divalent cations and of phospholipase A activity on excretion of cloacin DF13 and lysis of host cells. J Gen Microbiol 132:825-834.
Mallea M, Simonet V, Lee EH, Gervier R, Collatz E, Gutmann L, Pages JM. (1995). Biological and immunological comparisons of Enterobacter cloacae and Escherichia coli porins. FEMS Microbiol Lett 129:273-279.
Mock M, Schwartz M. (1978). Mechanism of colicin E3 production in strains harboring wild-type or mutant plasmids. J Bacteriol 136:700-707.
Muga A, Gonzalez-Manas JM, Lakey JH, Pattus F, Surewicz WK. (1993). pH-dependent stability and membrane interaction of the pore-forming domain of colicin A. J Biol Chem 268:1553-1557.
Nikaido H. (1994). Maltose transport system of Escherichia coli: an ABC-type transporter. FEBS Lett 346:55-58.
O''Keefe D, Collier RJ. (1989). Cloned diphtheria toxin within the periplasm of Escherichia coli causes lethal membrane damage at low pH. Proc Natl Acad Sci USA 86:343-346.
Osborne, M. J., Breeze, A., Lian, L. Y., Reilly, A., James, R. and Kleanthous, C., et al. (1996). Three-dimensional solution structure and 13C NMR assignments of the colicin E9 immunity protein Im9. Biochem 35:9505-9512.
Oudega B, Klaasen-Boor P, Sneeuwloper G, De Graaf FK. (1977). Interaction of the complex between cloacin and its immunity protein and of cloacin with the outer and cytoplasmic membranes of sensitive cells. Eur J Biochem 78:445-453.
Pommer AJ, Kuhlmann UC, Cooper A, Hemmings AM, Moore GR, James R, Kleanthous C. (1999). Homing in on the role of transition metals in the HNH motif of colicin endonucleases. J Biol Chem 274:27153-27160.
Pradel E, Marck C, Boquet PL. (1990). Nucleotide sequence and transcriptional analysis of the Escherichia coli agp gene encoding periplasmic acid glucose-1-phosphatase. J Bacteriol 172:802-807.
Pugsley AP, Rosenbusch JP. (1981). Release of colicin E2 from Escherichia coli. J Bacteriol 147:186-192.
Pugsley AP, Schwartz M. (1984). Colicin E2 release: lysis, leakage or secretion? Possible role of a phospholipase. EMBO J 3:2393-2397.
Pugsley, A. P. and Oudega, B. (1987). Plasmid, Hardy, K. G. (eds.), IRL Press, Oxford and Washington, D. C. p. 105-161.
Pugsley, A. P. and Schwartz, M. (1984). Colicin E2 release: lysis, leakage or secretion? Possible role of a phospholipase. EMBO J 3:2393-2397.
Reverchon S, Huang Y, Bourson C, Robert-Baudouy J. (1989). Nucleotide sequences of the Erwinia chrysanthemi ogl and pelE genes negatively regulated by the kdgR gene product. Gene 85:125-134.
Samuel AD, Pitta TP, Ryu WS, Danese PN, Leung EC, Berg HC. (1999). Flagellar determinants of bacterial sensitivity to chi-phage. Proc Natl Acad Sci USA 96:9863-9866.
Slilaty S N. and Little J W. (1987). Lysine-156 and serine-119 are required for LexA repressor cleavage: a possible mechanism. Proc Natl Acad Sci USA 84: 3987-3991.
Soong B W, Hsieh S Y and Chak K F. (1994). Mapping of transcriptional start sites of the cea and cei genes of the ColE7 operon. Mol Gen Genet 243:477-481.
Soong B W, Lu F M, Chak K F. (1992). Characterization of the cea gene of the ColE7 plasmid. Mol Gen Gene 233:177-183.
Stock JB, Rauch B, Roseman S. (1977). Periplasmic space in Salmonella typhimurium and Escherichia coli. J Biol Chem 252:7850-7861.
Vetter I R, Parker M W, Tucker A D, Lakey J H, Pattus F and Tsernoglou D. (1998). Crystal structure of a colicin Nn fragment suggests a model for toxicity. Structure 6:863-874.
Vianney A, Muller MM, Clavel T, Lazzaroni JC, Portalier R, Webster RE. (1996). Characterization of the tol-pal region of Escherichia coli K-12: translational control of tolR expression by TolQ and identification of a new open reading frame downstream of pal encoding a periplasmic protein. J Bacteriol 178:4031-4038.
von Heijne G. (1983). Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 133:17-21.
Walker G C. (1984). Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48:60-93.
Wallis R, Moore G R, James R and Kleanthous C. (1995). Protein-protein interactions in colicin E9 DNase-immunity protein complexes. 1. Diffussion controlled association and femtomolar binding for the cognate complex. Biochem 34:13743-13750.
Watson R, Rowsome W, Tsao J and Visentin L P. (1981). Identification and characterization of Col plasmids from classical colicin E-producing strains. J Bacteriol 147:569-577.
Wickner W, Driessen AJ, Hartl FU. (1991). The enzymology of protein translocation across the Escherichia coli plasma membrane. Annu Rev Biochem 60:101-124.
Wiener M C, Freyman D M. Glosh P and Stroud R M. (1997). The crystal structure of colicin Ia. Nature 385:461-464.
Witkin E M. (1976). Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev 40:869-907.
Yajima S and Uosumi T. (1993). The three-dimensional structure of the colicin E3 immunity protein by distance geometry calculation. FEBS Letters 333:257-260.
Yamada M, Miki T, Nakazawa A. (1982). Translocation of colicin E1 through cytoplasmic membrane of Escherichia coli. FEBS Lett 150:465-468.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top