[1]Jacobi, K. G. J., 1971, ”Uber ein leichtes Verfahren die in der Theorie der Saecularstoerungen vorkommenden Gleichungen numerisch aufzuloesen ,” Zeitshrift fur Reine und Angewandte Mathematik, Vol. 30,1846,pp. 51-95;
NASA TT.F-13,666, june
[2]Lancaster, P.,1964, “On Eigenvalues of Matrices Dependent on a Parameter,”Numerische Mathematik, Vol 6, No. 5,pp. 337-387.
[3]Fox, R. L. and Kapoor, M. P.,1968, ”Rate of Change of Eigenvalues and Eigenvectors,” AIAA journal, Vol 6, Dec. pp. 2426-2429.
[4]Rudisill, C. S. and Chu, Y., 1975, “Numerical Methods for Evaluating the Derivatives of Eigenvalues an Eigenvectors,” AIAA journal, Vol.13, June, pp. 834-837.
[5]Nelson, R. B.,1976, “Simplified Calculations of Eigenvector Derivatives,” AIAA journal, Vol. 14, Sept., pp.1201-1205.
[6]Ojalvo, I.U., 1988, “Efficient Computation of Modal Sensitivities for Systems with Repeated Frequencies,” AIAA journal 26, pp. 361-366.
[7]Dailey, R. L., 1989, “Eigenvector Derivatives with Repeated Eigenvalues,” AIAA journal 27, pp.486-491.
[8]Lee, I.-W. and Jung, G.-H., 1997, “An Efficient Algebraic Method for the Computation of Natural Frequency and Mode Shape Sensitives-Part I. Distinct Natural Frequencies,” Computers & Structures 62, pp.429-435.
[9]Lee, I.-W. and Jung, G.-H., 1997, “An Efficient Algebraic Method for the Computation of Natural Frequency and Mode Shape Sensitives-Part II. Multiple Natural Frequencies,” Computers & Structures 62, pp.437-443.
[10]Tan, Roger C. E., 1986, “Accelerating the Convergence of an Iterative Method for Derivatives of Eigensystems,” Journal of Computational Physics 67, pp. 230-235.
[11]Lee, I.-W., Jung, G.-H. and Lee , J-W., 1996, “Numerical Method for Sensitivity Analysis of Eigensystems with Non-Repeated and Repeated Eigenvalues,” Journal of sound and Vibration 195, pp. 17-32.
[12]Ortega, J. M., 1988, Introduction to Parallel and Vector Solution of Linear System, Plenum Press, NY.
[13]Golub, G. H. and Van Loan, C. F., 1989, Matrix Computation, 2nd Edition, The Johns Hopkins University Press, Batlimore, MD.
[14]Lai, Gwolong and Chen, Hsin-Chu, 1992, “Parallelization of Linear Finite Element Analysis,” Proceedings of the ASCE 8th National conference on Computing in Civil Engineering, Dallas,Texas, pp. 655-622.
[15]Hwang, T., 1991, Multilevel Solution Procedures for Structural Dynamices Eigenvalue Problems, Ph.D. thesis, University of Illinois at Urbaba-Champain, Illinois, USA.
[16]Chen, H.-C., Gao, H. and Lai, G., 1992, WHAMS3D Project Progress Report PR-3: Parallel Implementations of WHAMS3D on Two Share-Memory Multiprocessors, Report CSRD1248, Center for Supercomputing Research and Development, University of Illinois at Urbana-Champaign, USA.
[17]原作者 黃鎧,Faye Briggs;陳伯虞,沈肇基,陳日昌,林順喜,廖俊輝 譯,1991,計算機結構與平行處理,二版,格致圖書有限公司
[18]鄭守成,1996, “漫談平行電腦與平行計算”, 高速計算世界,四卷,四期,頁8-29,冬[19]Soegiarso, R. and Adeli, H.,1999, High-Performance Computing in Structural Engineering, CRC Press, New York.pp. 73-89
[20]William, Weaver, Jr. and Paul R. Johnston, 1984, Finite elements for structural analysis, Englewood Cliffs, N.J. :Prentice-Hall.pp. 205,208,294