跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 12:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游永豐
研究生(外文):Yung-Fong Yu
論文名稱:電子裝置衝擊減振之研究
論文名稱(外文):A Study of Shock Resistant of Electronic Device
指導教授:陳永樹陳永樹引用關係
指導教授(外文):Yeong-Shu Chen
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:103
中文關鍵詞:高密度構裝電子裝置衝擊脈衝波衝擊響應吸振器
外文關鍵詞:high packaging densityshock responseelectronic productsabsorberimpulse
相關次數:
  • 被引用被引用:14
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於電子裝置朝向高精密度的趨勢發展,故相對的電子產品之可靠度要求也益形重要。本研究即針對衝擊對電子產品造成之影響,提出改善的方法,並經由理論與實驗之驗證,提高其可靠度。
高密度構裝技術的進步,使得各種攜帶式電子產品,如:行動電話、無線電話、呼叫器、筆記型電腦、硬式磁碟機、數位相機等之普及率日益升高。而此類電子產品常因為人們的疏忽或在製造的過程中掉落地面,造成內部電子元件的破壞與失效。故分析這些電子產品對於受到衝擊時之響應情形,為本研究之重點。
而分析之方法,則為就電子產品之摔落情形與受各種衝擊脈衝波的影響,分別以理論與實驗探討之。理論方面,以能量法與自由落下雙自由度具阻尼、不具阻尼彈簧-質量系統建立電子裝置之數學模式,而實驗則以標準之衝擊測試機台施加力量測其衝擊響應。並進一步的對於減振理論與減振材料進行研究探討,再利用頻譜分析探究吸振器與結構之相互關係。本研究結合理論與實驗驗證,將可對電子裝置之抗衝擊設計,提供一有效之設計、分析模式。
In recent years, the reliability of electronic products is getting more and more important due to the high packaging density for today''s electronic devices. This study will focus on the response of electronic products under shock loading and investigate the methods of increasing the product reliability to resist shock or impulse loads by both the theoretical and experimental approaches.
Because of the progress of the technology of high-density packaging, various portable electronic products, such as mobile phones, wireless phones, beepers, notebooks, hard-disks, digital cameras...etc., have become more and more popular. The failure of such electronic devices usually results from the drops onto the ground during the manufacturing or shipping processes or under users’ application. Therefore, investigation of the response for these electronic products when subjected to shock loading is the key step in improving their reliability.
The study examines the effects of various pulse waves and the drop height effects applied on electronic products experimentally. A two-degree-of-freedom damped and undamped spring-mass system is presented as the theoretical model. The interactions between the absorber and the structure is also analyzed through the frequency response functions. It is believed that through these procedures, the methodology of designing a shock resistant electronic device is presented completely.
目 錄
中文 摘要i
英文 摘要ii
誌 謝iii
目 錄iv
表 目 錄vi
圖 目 錄vii
第一章 緒論1
1.1 前言1
1.2 研究背景與目的2
1.3 文獻探討4
第二章 理論及研究方法8
2.1 衝擊與減振理論9
2.1.1 衝擊理論9
2.1.2 減振理論12
2.2 數學模式15
2.2.1 能量法之衝擊響應數學模型16
2.2.2 應力響應數學模型18
2.2.3 自由落下具阻尼之雙自由度系統24
2.2.4 自由落下之無阻尼雙自由度系統26
2.3抗衝擊裝置27
2.3.1抗衝擊裝置阻尼特性28
2.3.2抗衝擊裝置設計34
2.4 標準軍事規範35
第三章 實驗量測50
3.1 實驗方法與流程50
3.2 實驗設備52
3.3 實驗結果55
3.3.1自由落下55
3.3.2軍事規範之衝擊波56
第四章 結果與討論75
4.1 電子裝置響應情形75
4.1.1 衝擊波激發響應75
4.1.2 自由掉落響應76
4.2 吸振器效應78
4.3 抗衝擊探討84
第五章 結論97
5.1總結97
5.2 未來方向98
參考文獻100
1. 汪紹華, “電子構裝多層結構體之振動分析”, 國立清華大學動力機械研究所, 碩士論文, 1994.
2. Y. S. Chen, “Predicting the Vibration Fatigue Lives of Electronic Components Mounted on a Printed Wiring Board”, The Graduate School of The University of Maryland, The requirements for the degree of Doctor of Philosophy, 1993.
3. Tin Lup Wong, Karl K. Stevens, Gang Wang, “Experimental Modal Analysis and Dynamic Response with Surface Mount Electronic Component”, Journal of Electronic Packaging, Vol.113, pp.244-249, 1991.
4. S. J. Ham and S. B. Lee, “Experimental Study for Reliability of Electronic Packaging under Vibration”, Experimental Mechanics, Vol.36, No.4, pp.339-344, 1996.
5. S. Kannappan and V. Kunukkassril, “Structural Analyses of Spacecraft Electronic Packages”, Journal of Electronic Packaging, Vol.114, pp.96-99, 1992.
6. Dave S. Steinberg, “Quick Way to Predict Random Vibration Failures”, Machine Design, pp.188-191, April 1978.
7. Mu-Lin Tsai, “Test Severity Studies between Free Fall Drop Table Shock and Shaker Shock”, Proceeding of the 3rd R.O.C. Symposium On R&M,1999.
8. Dave S. Steinberg, Vibration Analysis for Electronic Equipment, John Wiley & Sons, New York, 1988.
9. Howard W. Markstein, “Designing Electronics for High Vibration and Shock”, Electronic Packaging and Production, pp. 40-43, April 1987.
10. R. F. Keltie and K. J. Falter, “Guidelines for the Use of Approximations in Shock Response Analysis of Electronic Assemblies”, Transactions of ASME: Journal of Electronic Packaging, Vol. 115, pp.124-130, March 1993.
11. E. Suhir, “Nonlinear Dynamic Response of a Printed Circuit Board to Shock Loads Applied to its Supported Contour”, Transactions of ASME: Journal of Electronic Packaging, Vol. 114, December 1992.
12. J. H. Lau and C. A. Keely, ”Dynamic Characterization of Surface Mount Component Leads for Solder Joint Inspection”, in Proceeding 39th IEEE Electronic Components Conference, 1989.
13. T. L. Wong, K. K. Stevens, and G. Wang, ”Experimental Model Analysis and Dynamic Response Prediction of PC Boards with Surface Mount Electronic Components,” presented at the 1990 ASME Winter Annual Meeting, Dallas, TX, 1990.
14. P. A. Engel, “Structural Analysis for Circuit Card Systems Subjected to Bending”, Transactions of ASME: Journal of Electronic Packaging, Vol. 112, pp.2-10, March 1990.
15. E. Suhir, and R. Burke, “Dynamic Response of a Rectangular Plate to a Shock Load, with Application to Portable Electronic Products”, IEEE Transactions: Components, Packaging, and Manufacturing Technology, Part B 17, pp.449-460,1994.
16. E. Suhir, “Shock-excited Vibrations of a Conservative Duffing Oscillator with Application to Shock Protection in Portable Electronics”, International Journal Solids Structures, Vol. 33, No. 24, pp. 3627- 3642, 1996.
17. E. Suhir, “Response of a Flexible Printed Circuit Board to Periodic Shock Loads Applied to its Support Contour”, Journal of Applied Mechanics, Vol. 59, pp.253-259, June 1992.
18. Given A. Brewer, “Power Plant Fan Vibration Absorber Systems”, Sound and Vibration, pp.20-22, April 1983.
19. Richard Smith, “Dynamic Vibration Absorbers”, Sound and Vibration, pp.22-25, November 1998.
20. 許文茂, 如何運用吸振器改善機械振動, 機械工業雜誌, pp.173-180, 1991年8月.
21. S. E. Randall, D. M. Halsted, and D. L. Taylor, “Optimun Vibration Absorbers for Linear Damped Systems”, Transactions of the ASME: Journal of Mechanical Design, Vol. 103, pp.908-913, October 1981.
22. E. Suhir, “Maximum Displacement and Maximum Acceleration of a One-Degree-of-Freedom Linear System During Drop Tests: Effect of Viscous Damping”, International Technical Memorandum, March 1993.
23. 丁文鏡, 減振理論, 清華大學出版社, 北京, 1988.
24. L.A Pars, A Treatise on Analytical Dynamics, Woodbridge, London, 1979.
25. S.P. Timoshenko and D.H. Young, Vibration Problems in Engineering, 5th ed., John Wiley & Sons, New York, 1990.
26. S.P. Timoshenko and S. Weinowski-Krieger, Theory of Plates and Shells, 2nd ed., McGraw Hill, New York, 1959.
27. Cyril M. Harris, Shock and Vibration Handbook, McGraw Hill, New York, 1987.
28. James W. Dally, Packaging Electronic Systems: A mechanical engineering approach, McGraw Hill, New York, 1990.
29. C.T. Sun and Y. P. Lu, Vibration Damping of Structureal Elements, Prentice Hall, New Jersey, 1995.
30. Robert D. Corsaro, Sound and Vibration Damping with Polymers, American Chemical Society, Washington D.C., 1990.
31. ASTM-STD-E756, Standard Test Method for Measuring Vibration-Damping Properties of Materials, 1998.
32. MIL-STD-810E, Environmental Test Methods and Engineering Guidelines, Method 516.4:Shock, 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top