跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 08:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施建州
研究生(外文):ChienChou Shih
論文名稱:易燃性硬質PU發泡材質研究
指導教授:胡文華胡文華引用關係
指導教授(外文):WenHwa Hwu
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:應用化學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:87
中文關鍵詞:聚胺酯硬質發泡可燃性燃速燃速調節劑過氯酸銨推進劑矽烷偶合劑
外文關鍵詞:PolyurthaneRigid FoamsCombustibilityBurning RateBurning Rate ModifierAmmonium PerchloratePropellantSilane
相關次數:
  • 被引用被引用:4
  • 點閱點閱:480
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究之目的在尋找具高燃速與高抗壓強度之高分子膠料,以做為未來進一步開發推進劑藥柱之可燃模心時之參考。所採之高分子膠料為硬質聚氨基甲酸酯泡綿/過氯酸銨系統。實驗結果証實經由適當的調整配方中所含二元醇/三元醇之含量比、混合催化劑之組成及發泡劑之種類及用量,可以獲得發泡良好且抗壓強度(>2kg/㎝2)滿足需求之泡綿。此外,以第三丁醇來取代水做為發泡劑,除可避免在製作易燃性泡綿時具吸濕性的氧化劑與水作用外,亦能製得性能相當的泡綿。以烘烤方式製備之多孔性過氯酸銨的比表面積與真密度等物性受烘烤溫度與烘烤時間影響,烘烤溫度愈高與烘烤時間愈長,得到多孔性過氯酸銨的比表面積與真密度愈大。就多孔性過氯酸銨之熱分解而言,示差熱分析結果顯示其無論第一尖峰分解溫度與第二尖峰分解溫度均較過氯酸銨為低,意謂多孔性過氯酸銨與過氯酸銨相比可在較低之溫度即行分解,故以多孔性過氯酸銨取代泡綿中部份過氯酸銨,將有助於泡綿之熱分解進行,提高泡綿之燃速。此外,選擇對發泡物性及增燃效果有利的Butacene及Alex組合做為燃速促進劑,得到的易燃性泡綿燃速為傳統推進劑燃速的5倍。另再以經矽烷偶合劑包覆之超微粒過氯酸銨製作含50%氧化劑的易燃性泡綿,不但燃速可達傳統推進劑的10倍,並有更好的拌製物性。燃速亦受發泡密度影響,泡綿密度愈高,其燃速則愈慢,故採模具澆注發泡控制密度在0.21∼0.23g/㎝3。此等易燃性泡綿之燃速壓力指數值均僅約0.2左右,遠低於傳統推進劑之壓力指數值。

In order to develop a high burning rate material for further using in rocket motor fabrication, a series of rigid polyurethane (PU) / ammonium perchlorate (AP) foam were made in this study. The characteristics of these PU/AP foams were also investigated. Our results show that the PU foam which has the required compressive strength (> 2kg/cm2) can be made by adjusting the relative amount of binary alcohol to ternary alcohol, the composition of the mixed catalyst and by changing the kind and amount of the blowing agent. The burning rate of PU foam is dependent on the foaming density, oxidizer and burning rate catalyst. The higher the density of PU foam is, the lower the burning rate it has. Replacing part of AP with porous AP or ultra-fine AP enhances the burning rate of PU foam. Particularly, the burning rate of PU foam increases tremendously when using a catalyst system composed of Butacene and ultra-fine aluminum powder (ALEX) as well as silane treated ultra-fine AP. The pressure exponents of burning rate for these flammable foams are only about 0.2 which is much lower than that of the traditional propellant.

誌謝ii
摘要iii
ABSTRACTv
目錄vi
表錄x
圖錄xii
1.前 言…………………………………………………………………1
2.文獻回顧………………………………………………………………3
3.理論背景………………………………………………………………12
3.1.硬質發泡材料製造………………………………………………12
3.1.1.聚醇(Polyol)…………………………………………………13
3.1.2.二異氰酸酯(Diisocyanate)…………………………………14
3.1.3.發泡劑(Blowing Agent) ……………………………………16
3.1.4.催化劑(Catalyst)……………………………………………16
3.1.5.界面活性劑(Surfactant)……………………………………17
3.2.易燃材質製造……………………………………………………18
3.2.1.泡綿燃燒………………………………………………………18
3.2.2.氧化劑…………………………………………………………18
3.2.3.燃速調節劑……………………………………………………20
3.2.4.燃燒化學………………………………………………………22
4.實驗部份………………………………………………………………28
4.1.實驗材料及葯品…………………………………………………28
4.2.儀器設備…………………………………………………………29
4.3.硬質PU發泡製作…………………………………………………30
4.3.1.聚醇除水………………………………………………………30
4.3.2.PU發泡…………………………………………………………30
4.3.3.熟化……………………………………………………………31
4.4.多孔性過氯酸銨(PAP)製作 ……………………………………31
4.5.超細粒徑過氯酸銨(VFAP)表面改質……………………………32
4.6.易燃性泡綿製作…………………………………………………32
4.7.含燃速促進劑易燃性泡綿製作…………………………………32
4.8.物性測試…………………………………………………………33
4.8.1.含燃速促進劑葯漿黏度量測…………………………………33
4.8.2.尺寸收縮率量測………………………………………………33
4.8.3.密度、抗壓強度測試…………………………………………33
4.8.4.永久變形率及硬度測試………………………………………34
4.8.5.燃速測試………………………………………………………34
5.結果與討論……………………………………………………………35
5.1.硬質PU泡綿配方…………………………………………………35
5.2.硬質PU泡綿物性與機械性質量測………………………………36
5.3.PAP製作 …………………………………………………………38
5.3.1.PAP比表面積、真密度及顯微攝影 …………………………38
5.3.2.PAP熱分析 ……………………………………………………44
5.4.易燃性泡綿測試…………………………………………………47
5.4.1.配方選擇………………………………………………………47
5.4.2.易燃性泡綿物性分析…………………………………………48
5.4.3.易燃性泡綿熱分析測試………………………………………49
5.4.4.燃速測試結果…………………………………………………54
5.5.含燃速促進劑易燃性泡綿測試…………………………………57
5.5.1.配方選擇………………………………………………………57
5.5.2.含燃速促進劑易燃性泡綿物性分析…………………………59
5.5.3.含燃速促進劑易燃性泡綿熱分析測試………………………64
5.5.4.含燃速促進劑易燃性泡綿燃速測試結果……………………71
6. 結 論 ……………………………………………………………………75
參考文獻………………………………………………………………………77
自 傳…………………………………………………………………………87

方禹聲、朱昌民,聚氨酯泡沬塑料,2版,化學工藝出版社,北京,第1-12頁,1999 。
[2] 何蒼峰,“PU化學及其應用,”塗料與塗裝技術,第15期,第38-46頁,1989。
[3] 中正理工學院,推進劑學,中正理工學院兵器系統叢書,12,第25-30頁,1991。
[4] Klager, K.,“Polyurethanes, the Most Versatile Binder for Solid Com- posite Propellants,”AIAA-84-1239, pp.1-8, June, 1984.
[5] Eavenas, A., Solid Rocket Propulsion Technology, SNPE France , pp.415-423, 1993.
[6] Morse, W. G., Dallon, F. W., “Reinforced Plastic Construction Me- thods for Large Rocket Motor Case,”RTD-TR-63-7-858, n5, pp.1-72, 1963.
[7] 閔斌,防空導彈固體火箭發動機設計,宇航出版社,北京,第90-92頁,1993。
[8] 眭英、胡克嫻,固體火箭發動機,北京理工大學出版社,北京,第110-120頁,1990。
[9] Schultz, S. F.,“Disposable Mandrals for Making Rocket Motors,”A82 -36325, pp.26-33, 1971.
[10] Sutton, G. P., Rocket Propulsion Elements , 6th ed., John Wiley & Sons., New York, NY, pp.390-399, 1992.
[11] Janson, E. G., Bizzell, R. M., Daniewicz, D. J., Wilkerson J. A., “ASRM Soluble Core,”AIAA-PAPER- 93-2057, pp. 1-9, June, 1993.
[12] 唐承志,“航天飛機先進固體火箭發動機的推進劑,”固體火箭技術,第十九卷,第一期,第57-62頁, 1996。
[13] Gualillo, S. P., Dale, W. I., Jr., “Development of A Manufacturing Process and Associated Equipment to Improve Internal Core Forming in Solid Propellant Rocket Motors ; Phase Ⅰ:Evalvation and Se- lection of Design and Materials,”IR-8-260(Ⅳ) , pp. 1-60, 1966.
[14] Gualillo, S. P., Dale, W. I., Jr.,“Development of A Manufacturing Process and Associated Equipment to Improve Internal Core Forming in Solid Propellant Rocket Motors,” AFMC-TR-68-144, pp. 1-91, 1963.
[15] 陳佳興,“可燃性高分子膠材燃速改良與研究,”碩士論文,國立清華大學化學工程研究所,新竹,1987。
[16] 瞿寧若、辜文雄,“易燃分子膠材研究,”國推會計畫結案報告,NSC79-0210-D007-29,第1-75頁,1991。
[17] 楊榮杰,“超高燃速固體推進劑研究現況,”推進技術,第四期,第57-61頁,1992。
[18] Juhasz, A. A., May, I. W., Aungst, W. P., Lynn, F. R., “Combustion Studies of Very High Burning Rate(VHBR) Propellants,” Memo- randum Report ARBRL-MR-03152, February, pp.1-48, 1982.
[19] Redecker, Klaus, Penner, Horst, “Method for Preparation of Porous Propellants, ” U.S. PATENT, 5,230,841, 1991.
[20] 張煒、朱慧,固體推進劑性能計算原理,長沙,湖南,國防科技大學出版社,第506-527頁,1996。
[21] Bircumshaw, L. L., Newman, B. H., “The Thermal Decomposition of Ammomium Perchlorate Ⅱ, The Kinetics of the Decomposition, The Effect of the Particle Size and Discussion of Results,” Proc. Roy. Soc., A227, pp. 228-241, 1955.
[22] Lista, E.L., “Solid Porous, Coated Oxidizer, Method of Prepartion and Novel Prepellant Compositions,” U. S. Patent 3,830,672, 1974.
[23] Hagihara, Y. and Ito, T., “Studies on Porous Ammonium Perchlorate (1), Its Preparation by Treatment of Heating at 315℃ under a Reduced Pressure,”J. Ind. Explosives, Soc. Japan, Vol. 47, No. 4, pp. 238-247, 1986.
[24] 金順志,“流體化床對多孔性過氯酸銨製造之研究,” 碩士論文,中正理工學院化學研究所,桃園,1985。
[25] 巫如釗,“多孔性過氯酸銨之製造及以其為氧化劑之組合式固體推進劑之研究,” 碩士論文,中正理工學院化學研究所,桃園,1985。
[26] 孫長春、呂安陸、石玉山,“多孔性過氯酸銨之製造程序,”中華民國火藥學會民國75年年會論文集,第147-148頁,1986。
[27] Leu, A. L., Yeh, T. F., Chang, F. M., Liu, C. S., Huang, C. C., Lin, F., Shin, Y. S., “Burning Behavior of Composite Solid Propellant Con- taining Porous Ammonium Perchlorate,” Propellants, Explosives, Pyrotechnics., No. 14, pp. 108-112, 1989.
[28] Klager, K., Manfred R. K., and Lista, E. L., “Burning Behavior of Porous Ammonium Perchlorate,”10th International Conference of ICT, Karlsruhe [Proc], pp. 283-297, 1979.
[29] Sayles, D. C., “ Ultra-Ultrahigh Burning Rate Composite Modified Double-base Propellant Containing Porous Ammonium Perchlorate,” U. S. Patent, 4,944,816 , 1976.
[30] Leu, A. L., Wu, R. J., “Formulation Effects on the Burning Rate of Aluminized Solid Propellants,” J. Propul. Power, Vol. 4, No. 1, pp. 22-26, 1988.
[31] Chang, F. M., Huang, C. C., Yeh, T. F., Liu, A. L., “Characteristics of Porous Ammonium Perchlorate and Propellants Containing Same,” Propellants, Explosives, Pyrotechnics., No. 15, pp. 261-265, 1990.
[32] Kohga, M., Hagihara, Y., “Burning Behavior of Composite Propellant Containing Fine Porous Ammonium Perchlorate,” Propellants, Ex- plosives, Pyrotechnics., No. 23, pp.182-187, 1998.
[33] 李辰芳,“對含細顆粒多孔高氯酸推進劑燃燒性能的研究,”飛航導彈,第八期,第38-40頁,1999。
[34] Bhatti, A. S., Dollimore, D., “The Thermal Decomposition of Copper /Chromium Carbonate,” Thermochimica Acta, Vol. 79, pp. 205-216, 1984.
[35] Handley, J. C., Strahle, W. C., “Behavior of Several Catalysts in the Combustion of Solid Propellant Sandwiches,” AIAA Journal, Vol. 13, No. 1, pp. 5-6, 1975.
[36] Pittman, C. U., “Location of Action of Burning-Rate Catalysts in Composite Propellant Combustion,” AIAA Journal, Vol. 7, No. 2, pp 328-334, 1969.
[37] Ashmore, C. I., Stephons, W. D., “Solid Propellant Having Incorpo- rated Therein a Ferrocene Combustion Catalyst,” U. S. Patent 4,108,696, 1978.
[38] Huskins, C. W., Williams, L. J., “Silane Ballistic Modifier Containing Propellant,” U. S. Patent 4,412,874, 1983.
[39] Gonsalves, K. E., Rausch, M. D., “Segmented Poly(ethyl urethane) Films Containing Ferrocene Units in the Hard Segments,” J. Polymer Science, Part A: Polymer Chemistry, Vol. 24, pp. 1599-1607, 1986.
[40] Kishore, K., Pai Verneker, V. R., “Crosslinking Reactions of 1,1 Prime-bis(Glycidoxymethyl) Ferrocene with Carboxyl-Terminated Polybutadiene and Its Wetting Effect,” J. Polymer Science, Part A: Polymer Letters Edition, Vol. 22, pp.607-610, 1984.
[41] Kishore, K., Rajalingam, P.,“Bonding Ability and Bonding Site of a New Ferrocene Based Silicon Compound in Composite Solid Prope- llants,” J. Polymer Science, Part C: Polymer Letter, Vol. 24, No. 9, pp. 471-476, 1986.
[42] Schwanz, W. W., Lowrey, R. D., “Silane PolySulfide Polymers as Solid Composite Propellant Binders,”J. Appl. Polym. Sci., Vol. 11, pp. 553-566, 1967.
[43] Hammond, J. M., Hryhorciw, S., Stutchbury, J. E., “Silane Polyure- thane Composite Propellant Binders,” AIAA Journal, Vol. 8, No. 1, pp. 163-170, 1970.
[44] 蔡昌利,“矽化合物對固態燃料燃速之影響,” 碩士論文,國立清華大學化學工程研究所,新竹,1989。
[45] Chu, N. J., Tsai, C. L., “Effect of Organo-Silicon Compounds on the Burning Behavior of AP/PU Propellants,” 21st International Annual Conference of ICT, No. 41, pp. 41-54, July, 1990.
[46] Gantier, J. C., Fontanille, M. H., “Polymer with Ethylenic Unsatura- tions Incorporating Silylmetallocene Groups, Process for the Manufa- cture of This Polymer, and Propellant Composition Having This Poly- mer as A Binder,” U. S. Patent 4,668,313, 1987.
[47] Raynal, S., Doriath, H., “New Functional Prepolymers for High Bur- ning Rates Solid Propellants ,”AIAA/22nd Joint Propuision Confe- rence, Huntsoaille, Alabama, AIAA Paper 86-1594, June, 1986.
[48] Young, S. Y., Chu, N. J., Chen, D. M., Perng, H. C., “Effect of Si and Fe Catalysts on Thermal Decomposition and Burning Rate of Solid Propellants,” Journal of Explosive and Propellants, ROC, Vol. 8, No. 2, pp. 1-10, 1992.
[49] 王俊傑,“可燃性高分子膠材燃速改良與研究,” 碩士論文,國立清華大學化學工程研究所,新竹,1990。
[50] 周先正,陳正康,陳省三,“Butacene 高燃速推進劑研製,”中華民國火藥學會民國82年年會論文集,第5-8頁,1993。
[51] Inanov, G. V., Leonov, S. N., Savinov, G. L., Garrilyuk, O. V., Glazkov, D. V., “Combustion of Ultradisperse Aluminium-Gel Foam Mix- ture,” Fizika Goreniy a I Vzryva, Vol. 30, No. 4, pp.167-168, 1994.
[52] Tepper, F., “Electro-Explosion of Wire Produces Nanosize Metals,”Metal Power Report, Vol. 53, No. 6, pp. 31-33, June, 1998.
[53] Kuo, K. K., Mench, M. M., Yeh, C. L., Lu, Y. C., “Comparison of Thermal Behavrior of Regular and Ultra-Fine Aluminum Powder (ALEX) Made from Plasma Explosion Process,” Combustion Science and Tech., Vol. 135, No. 1, pp.269- 292, 1998.
[54] Chiaverini, M. J., Harting, G. C., Lu, Y. C., Kuo, K. K., Peretz, A., Jones, H. S., Wygle, B. S., Arves, J. P., “Pyrolysis Behavior of Hybrid-Rocket Solid Fuels under Rapid Heating Conitions,” Journal of Propulsion and Powder, Vol. 15, No. 6, pp. 888-895, 1999.
[55] Kuo, K. K., Summerfield, M., Vichnevetsky, R., “Generation of an Accelerated Flame Front in a Porous Propellant,”AIAA-PAPER-71 210, AIAA 9th Aerospace Science Meeting, pp.1-16, January, 1971.
[56] Kuo, K. K., Summerfield, M., Vichnevetsky, R., “Theory of Flame Front Propagation in a Porous Propellant Charges Under Confin- ment,” AIAA Journal, Vol. 11, No. 4, pp.444-451, 1973.
[57] Andreev, K. K., Khariton, Y. B., “Experimental Investigation of the Combustion of Explosives,” State Public House of Defense Industry, pp. 39-60, 1940.
[58] Andreev, K. K., “The Problem of The Mechanism of Transition From Burning to Detonation in Explosves,”Journal of Physical Chemistry, Vol. 17, pp.533-537, 1994.
[59] Krier, H., Hoffman, S. J., “Fluid Mechanics of Deflagration-to- Detonation Transition in Porous Explosives and Propellants,” AIAA Journal, Vol. 19, No. 12, pp. 1571-1579, 1981.
[60] Mecek, A., “Transition From Deflagration to Detonation in Cast Ex- plosives,”J. Chem. Phys., Vol. 31, No. 1, pp. 162-167, 1959.
[61] Frolov, Y. V., Korostelev, V. G., “Combustion of Gas-Permeable Porous System,” Propellants, Explosives, Pyrotechnics., Vol. 14, pp. 140-149, 1989.
[62] 王佰羲、羅善國,“透氣推進劑對流燃燒特性的影響因素,”推進技術,第十四卷,第五期,第59-65頁,1993。
[63] 王佰羲,“一種測定高燃速推進劑孔隙結構的方法,”推進技術,第十七卷,第五期,第72-75頁,1996。
[64] 楊遠威,“均勻氣孔軟質發泡之製備與應用,” 碩士論文,國立交通大學應用化學研究所,新竹,1985。
[65] 李兆民、周生國、王春利、張訓文、劉玉群,“超高燃速多孔推進劑發動機的點火特性”,推進技術,第十七卷,第一期,第54-57頁,1996。
[66] 高寶泰、陸式祥譯,火箭推進原理,協志工業叢書,第1頁 ,1967。
[67] Chou, C. L., Leu, A. L., “Thermal Decomposition of Ammonium Perchlorate with and without Additive,” J. Chung Cheng Inst. Tech., Vol. 11, No.1, pp. 69-81, 1981.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top