跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 05:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳宏傑
研究生(外文):Hung-Chieh Chen
論文名稱:氣態分子酸性之理論研究
論文名稱(外文):Theoretical Study on the Acidity of Gas-Phase Molecules
指導教授:陳 成
指導教授(外文):Cheng Chen
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:應用化學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:82
中文關鍵詞:氣態分子酸性拉電子基推電子基羧酸
外文關鍵詞:gas-phaseacidityelectron-withdrawingelectron-releasingcarboxylic acid
相關次數:
  • 被引用被引用:2
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氣態分子酸度在沒有溶劑介質作用的影響,可視為絕對酸度。運用Gauss-
ian98套裝軟體模擬計算所得的計算值與文獻上所載的實驗值比較後,以泛密度函數理論(Density Functional Theory簡稱DFT)的B3LYP/6-311
+G(2d,p)、B3LYP/6-311++G(3df,2pd)及Ab Initio 分子軌域法中的CBS-QB3等三種方法的計算值與實驗值較吻合,三種計算方法的相對標準差均小於2﹪,顯示這三種計算模擬方法是值得信賴的。羧酸類分子在立體結構上有syn與Anti兩種不同的構形,經比對此兩種構形異購物的計算值與文獻所載的實驗值可以發現Anti構形的計算值與文獻之實驗值較接近。氟原子取代有機化合物的氫原子,比較計算所得置換前與置換後酸度的變化,以氟原子取代後,氣態分子的自由能下降約50-100 kJ/mol,羧酸兩種構形的能差並由原先的20 kJ/mol左右,下降至約6 kJ/mol。運用單點能(Single Point Energy)計算模式,處理氣態分子能量,與B3LYP/6-311
++G(3df,2pd)比較計算所需時間,大約可節約五至十倍,精確度與密度泛函數(DFT)最高層級B3LYP/6-311++G(3df,2pd)相當接近,可以解決大型分子在理論計算無法運用較高層級計算方法計算能量的困擾。

The acidity of gas-phase molecules, without being affected by solvent, can be regard as absolute acidity. After compared the theoretically calculated and experimental measured values, the relative standard deviations as found herein, which are gained through the application of B3LYP/6-311++G(3df,2pd)、B3LYP/6-311+
G(2d,p) and CBS-QB3 provided by the Gaussian 98 package software
, are less than 2%. Obviously, the accuracy of the three methods
of calculation is more reliable. Carboxylic acids exist in two forms, syn and anti conformers. The result of calculation shows that the calculated value of anti conformer is more closer to the experimental measured value. Because the acidity is affect-
ed by the nature of substitution group in the carboxyl group, as a result, the delocalization interaction of electron-withdra-
wing and electron-releasing substituents on the π electron in the carboxyl group affected the acidity of carboxylic acids. Fluorine atom has strong electron-withdrawing effect. Molecules are substituited by Fluorine reduce Gibbs energy about at 50-100 kJ/mol and substantially promote the acidity of molecules. Using higher basis set to calculate large molecule is impractic-
al in reality. This question has been soved to use single point
model. By comparing various calculation methods used in the present research we found that the current method is five to ten times less than B3LYP/6-311++G(3df,2pd). The accuracy of this simple model calculation is also reasonable well compared to B3LYP/6-11++G(3df,2pd).

誌謝……..…..……….……………………………..…………………. ii
摘要……..…..……………..…………………………………………….iii
ABSTRACT…….………………………………….………….....………… iv
目錄……..…..………………………………….…………....……………v
表錄……..…..…...………………………………….………………..viii
圖錄……..…..…………………………………….…….….…………...xi
1.緒論……..…..…………………………………….………….………….1
1. 1.研究動機……..…....…………………………………………………1
1. 2.研究目的………..…………....………………………………………5
1. 3.研究架構……..……………....………………………………………6
2.計算方法探討.…..…..…….…………………………………………….7
2. 1.分子結構建立…..…..………………………………………………7
2. 2. Gaussian 98套裝軟體計算..……………...…………………….7
2. 2. 1.分子結構及能量計算….…..………….….………….....…….9
2. 2. 1.1.AM1法…………….…..………….….…………....…….. 9
2. 2. 1.2.PM3法…………….…...………….….…………...…….. 9
2. 2. 1.3.HF/6-31G**…………….…..…….….…………...…….. 9
2. 2. 1.4.MP2/6-31G**………..……..…….….…………..……...10
2. 2. 1.5.CBS-QB3……………….…..…….….…………...……...10
2. 2. 1.6.B3LYP/6-31G*..….…..……..…….….………………...11
2. 2. 1.7.B3LYP/6-31G**….…..……..…….….………….……...12
2. 2. 1.8.B3LYP/6-311+G(2d,pd).………….….…………..……...12
2. 2. 1.9.B3LYP/6-311++G(3df,2pd)……....….………….……...13
2. 2. 2.分子振動頻率計算……………………….....………………...13
2. 3.標準差及相對標準差之計算…..………………………………...13
2. 4.半經驗法INDO之鍵能鍵次計算..………………………………...14
2. 4. 1.π鍵次計....………………………………………………..14
2. 4. 2.有關H與其他原子(N或O)間之σ鍵次(Pσ)計算 .....14
2. 4. 3.區域化鍵能的計算方法 ……..…….….…………………14
3.結果與討論 ..…..….……….………………………………………...17
3. 1.穩定態結構的熱化學計算 ..………………..…………………..17
3. 2.羧酸類兩種構形酸度比較…….…..……………………………..24
3. 3.氟對氣態分子的酸度影響…..…………………………………...26
3. 3. 1.甲醇的氟化…………….….…….….………………………29
3. 3. 2.甲烷的氟化…………….….….….….………….…………30
3. 3. 3.甲酸的氟化………….…..….….….………………………32
3. 3. 4.乙醇、乙烯醇的氟化…………..….……………….………34
3. 3. 5.乙醛酸的氟化…………….……..….……………..……..36
3. 3. 5. 1.乙醛酸………………..….….……………...………36
3. 3. 5. 2.氟化乙醛酸 ..………...….….…………….………37
3. 3. 6.丙烯酸的氟化 .....…………….….………………………42
3. 3. 6. 1.丙烯酸…..….…………….….………………………42
3. 3. 6. 2.氟化丙烯酸…..….……………..……………………45
3. 3. 7.苯甲酸的氟化 ..………...…..……………………………58
3. 3. 8.酚的氟化 ..……………..…….……………………………60
3. 4.單點能計算 ..…………………..…………………………………66
4.結論………..……..…………………………..….…………………...69
4. 1.穩定態幾何結構計算……………...………………………………69
4. 2.羧酸構形異構物酸度比較………...………………………………71
4. 3.氟取代基對氣態分子酸度的影響...………………………………71
4. 4.氟取代基生成的分子內氫鍵對酸的影響...………………………71
4. 5.單點能計算………………………...………………………………72
參考文獻……………..………………………………………………....…73
自傳……………………......………………………………………………82

1.Catalan, J., Palomar, J., “Gas-Phase Protolysis Between a
Neutral Bronsted Acid and a Neutral Bronsted Base,” Chem.
Phys.Lett., 293, pp.511-514, 1998.
2.Farcasiu, D., Ghenciu, A., “Determination of Acidity
Functions and Acid Strenghs by 13C NMR,” J. Pro. Nuc. Mag.
Reson. Spectr., 29,pp.129-168, 1996.
3.Grandinetti, F., Speranza, M., “Uncommon Eletronic Effects
on the Gas-Phase Bronsted Acidity of Isomeric Hydroxyphenyl- ium Ions,” Chem. Phys.Lett., 229, pp.581-586, 1994.
4.Higgins, P. R., Bartmess, J. E., “The Gas-Phase Acidities of
Long Chain Alcohols,” J. Mass Spectrom. Ion Phys., 175,
pp.71-82, 1998.
5.Zaghloul, A. A., El-Naggar, G. A., El-Shazly, Sh. A., Amira,
M. F., “Solvent Effects on the Dissociation Reactions of
Tartaric, Maleic and Phthalic Acids; Comparative Study and
Analysis of Thermodynamic Functions,” Talanta, 45, pp.189-
201, 1997.
6.Masamura, M., “Ab Initio Study of the Structur of CH3COO- in
Aqueous Solution,” J. Mol. Struct., 466, pp.85-93, 1999.
7.Burk, P., Koppel,I. A., Koppel, I., Leito, I., Travnikova,O.,
“Critical Test of Performance of B3LYP Functional for
Prediction of Gas-Phase Acidities and Basicities,” Chem.
Phys. Lett., 323, pp.482-501, 2000.
8.Fujuio, M., Mclver, R. T., Taft, R. W., “Effects on the
Acidties of Phenols from Specific Substituent-Solvent
Interactions. Inherent Substituent Parameters from Gas-Phase
Acidties,” J. Am. Chem. Soc., 103, pp.4017-4023, 1981.
9.Chen, C., Shyu, Sh. F., “Conformers and Intramolecular
Hydrogen Bonding of Salicylic Acid and Its Anions,” J. Mol.
Struct., 74, pp.395-402, 2000.
10.徐雙富、陳 成、鄭根發,”丙二酸及其離子之理論研究:構形異構
物及分子內氫鍵研究,” 化學, 58(3), pp.407-419, 2000.
11.陳 成、徐雙富、鄭根發,”蘋果酸構形異構物及分子內氫鍵之研
究,”化學, 58(2), pp.241-258, 2000.
12.徐雙富、陳 成,”丙酮酸之理論研究: 構形異構物,甲基超共軛及甲
基轉動能障,” 中正嶺學報,28(2), pp.151-162, 2000.
13.Chen , C., Shyu, Sh. F.,”Theoretical Study of Glyoxylic
Acid and Pyruvic Acid:Rotamers and Intramolecular Hydrogen
Bonding,” J. Mol. Struct., 503, pp.201-209, 2000.
14.Chen, C., Shyu, Sh. F., “ Theoretical Study of Oxalic Acid
and Its Anions,” Int. J. Quant. Chem.,76, pp.541-553, 2000.
15.陳 成、徐雙富、許福生,”乳酸之構形異構物及分子內氫鍵之研究,
“ 中正嶺學報, 28(1), pp.51-62, 1999.
16.Shyu, Sh. F., Chen, C., ”Theoretical Study of Cis-Hydroxyl
Acrylic Acid (cis-CH(OH)=CH(COOH)):Intra-Molecular Hydrogen
Bonding and Conformers,” J. Mol. Struct., 491, pp.133-138,
1999.
17.陳成、陳宏傑、徐雙富,”氣態分子酸度之理論研究,” 化學,
58(4),pp.571-582, 2000.
18.Burk, P., Sillar, K., “Acidty of Saturated Hydrocarbons,”
J. Mol. Struct.,(Theochem) 535, pp.49-55, 2001.
19.Rafael Notario; Obis Castano; Jose Luise M. Abboud,
“Regarding the Gas-Phase Acidity of CF3OH,” Chem. Phys.
Lett, 263, pp.367-374,1996.
20.Random, L., “The Chemistry of Gas-Phase Ions: a Theoretical
Approach,” J. Mass Spectrom. Ion Processes, 118, pp.339-344
, 1992.
21.Graul, S. T., Squires, R. R., “Gas-Phase Acidities Derived
from Threshold Energies for Activated Reactions,” J. Am.
Chem. Soc., 112, pp.2517-2524, 1990.
22.Smith, B. J., Radom, L., “Evaluation of Accurate Gas-Phase
Acidities,”J. Phys. Chem., 95, pp.10549-1052, 1991.
23. Frisch, M. J., Truck, G. W., Schlegel, H. B., Scuseria, G.
E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G.,
Montgomary, J. A., Stratmann, R. E., Burant, J. C.,
Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N.,
Strain, M. C., Farkas, O., Tomasi, J., Barone,V.,
Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C.,
Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y.,
Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D.,
Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J.
V., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P.,
Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J.,
Keith,T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A.,
Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B.
G., Chen, W., Wong, M. W., Andres, J. L., Head-Gordon, M.,
Replogle, E. S. and Pople, J. A., Gaussian 98 Revision-A.6,
Gaussian, Inc., Pittsburgh, PA , 1998.
24.Koppel, I. A., Taft, R. W., Anvia, F., Zhu, Sh. Z., Hu, Li
Qu., Sung, K. S., DesMarteau, D. D., Yagupolskii, L. M.,
Yagupolskii, Y. L., Ignat’ev ,N. V., Kondratenko, N. V.,
Volkonskii, A. Y., Vlasov, V. M., Notario, R., Maria, P. C.,
“The Gas-Phase Acidties of Very Strong Neutral Bronsted
Acids,” J.Am. Chem. Soc., 116,pp.3047-3061, 1994.
25.Morrison, R. T., Boyd, R. N., Organic Chemistry, Sixth
Edition, Ch. 19 ,Englewood Cliffs, New Jersey, 1992.
26.Sklenak, S., Gatial, A., Biskupic, S., “ Ab Initio Study of
Small Organic Azides,” J. Mol. Struct.,( Theochem ) 397,
pp.249-254, 1997.
27.Dobbins, R. A., Mohammed, K., “Pressure and Density Series
Equations of State for Steam as Derived from the Haar-
Gallagher-Kell Formation,”J. Phys. Chem. Ref. Data, 17,
pp.1-8, 1988.
28.Lias, S. G., Liebman, J. E., Holmes, J. L., Levin, R. D.,
Mallar, W. G., “ Evaluated Gas Phase Basicities and Proton
Affinities of Molecules; Heats of Formation of Protonated
Molecules,” J. Phys. Chem. Ref. Data, 13, pp.695-808, 1984.
29.Born, M., Ingemann, S., Nibbering, Nico.M., "Thermochemical
Properties of Halogen-Substituted Methanes, Methyl Radicals,
in the Gas Phase,” J. Mass Spectrom., 194, pp.103-115, 2000.
30.Remko, M., “The Gas-Phase Acidities of Substituted Carbonic
Acids,” J. Mol. Struct.(Theochem), 492, pp.203-212, 1999.
31.Remko ,M., Liedl, K. R., Rode, B. M., “Gas-Phase Acidities
of HM(=X)XH(M = C, Si; X = O, S) Acids Calculated by Ab
Initio Molecular Orbital Methods at the G2 Level of Theory,”
Chem. Phys. Lett., 263, pp.379-385, 1996.
32.Taft, R. W., Koppel, I. A., Topsom, R. D., Anvia, F.,
“Acidities of OH Compounds, Inclouding Alcohol, Phenol,
Carboxylic Acids, and Mineral Acids,” J. Am. Chem. Soc.,
112,pp.2047-2052, 1990.
33.Jurric, B. S., “Complete Basis Set, Gaussian, and Density
Functional Theory Study of the Vinylindine-Acetylene
Rearrangement,” J. Mol. Struct. (Theochem), 488, pp.87-96,
1999.
34.Alkotar, I., Elguero, J., “Carbon Acidity and Ring Strain:
a Hybrid HF-DFT Approach (Becke3LYP/6-311++G**),”
Tetrahedron, 53, pp.9741-9753, 1997.
35.Pashkevich, D. S., Muhortov, D. A., Podpalkina, E. A.,
Barabanov, V. G., “Kinetics of Gaseous Fluorination of
1,1,1,2-Tetrafluooethane with Elemental Fluorine,” J.
Fluorine Chem., 96, pp.3-12, 1999.
36.Lier, G. V., Safi, B., Geerlings, P., “Acidty of
Substituted Hydrofullerenes: an Ab Initio Quantum-Chemical
Study,” J. Phys. Chem. Solids, 58,pp.1719-1724, 1997.
37.Gelessus, A., Thiel, W., “Squaric Acid Difluoride,” J.
Fluorine Chem.,99, pp.99-103, 1999.
38.Tanuma, T., Irisawa, J., “Ab Initio 19F NMR Chemical Shifts
Calculations for Halogenated Ethanes and Propanes,” J.
Fluorine Chem., 99, pp.157-162, 1999.
39.Radice, S., Tortelli, V., Causa, M., Castiglioni, C., Zerbi,
G., “Quantum Mechanical Calculations and Spectroscopic
Analysis of Fluorinated Vinyl Ether Molecules,” J. Flourine
Chem., 95, pp.105-111, 1999.
40.Barkalov, I. M., Karnaukh, A. A., “Gas-Phase Fluorination
of Fluorochloromethanes by CF3OF in the Presence of
Oxygen,” J. Flourine. Chem., 96, pp.71-80, 1999.
41.Alkorta, I., Rozas I., Elguero, J., “Effects of Fluorine
Substitution on Hydrogen Bond Interactions,” J. Flourine
Chem., 101, pp.233-242, 2000.
42.Deturi, V. F., Ervin, K. M., “Proton Transfer Between Cl-
and C6H5OH.O-H Bond Energy of Phenol,” J. Mass Spectrom.
Ion Processes, 175,pp.123-131, 1998.
43.Huey, L. G., Dunlea, E. J., Howard, C. J., “Gas-Phase
Acidity of CF3OH,” J. Phys. Chem., 100, pp.6504-6511, 1996.
44.Sutheimer, S. H., Ferraco, M. J., Cabaniss, S. E.,
“Molecular Size Effects on Carboxylic Acidty: Implications
for Humic Substances,”Analy. Chim. Acta, 304, pp.187-192,
1995.
45.Burk, P., Schleyer, P. van Rague, “Why Are Carboxylic Acids
Than Alcohols? The Eletrostatic Theory of Siggel-Thomas
Revisited,” J. Mol. Struct.(Theochem), 505, pp.161-169,
2000.
46.Wenthold, P. G., Squires, R. R., “Gas-Phase Acidities of O-
, M-, P-Dehydrobezoic Acids. Determination of the
Substituent Constants for a Phenyl Radical Site,” J. Mol.
Struct.(Theochem), 175, pp.215, 1998.
47.Foresman, J. B., Frisch A., Exploring Chemistry with
Electronic Structure Methods, 2nd ed., Gaussian Inc.,
Pittsburgh, PA, 1996.
48.McWeeny, R., Dierksen,G.,“ Self-Consistent Perturbation
Theory. Ⅱ. Extension to Open Shells, ” J. Chem. Phys., 49,
pp.4852-4861, 1968.
49.Saebo, S., Almlof, J., “Avoiding the Integral Storage
Bottleneck in LCAO Calculations of Electron Correlation, ”
Chem. Phys. Lett., 154, pp.83-94, 1989.
50.Head-Gordon, Martin, Pople, John A., Frisch, Michael J.,
“MP2 Energy Evaluation by Direct Methods,” Chem. Phys.
Lett., 153, pp.503-510, 1988.
51.Frisch, Michael J., Head-Gordon, Martin, Pople, John A., “A
Direct MP2 Gradient Methods,” Chem. Phys. Lett., 166,
pp.275-283, 1990.
52. Frisch, Michael J., Head-Gordon, Martin, Pople, John A.,
“Semi-Direct Algorithms for the MP2 Energy and Gradient,”
Chem. Phys. Lett., 166, pp.281-301, 1990.
53.Flores, J. R., “High Precision Atomic Computations from
Finite Element techniques: Second-Order Correlation Energies
of Rare Gas Atoms,” J. Chem. Phys., 98,pp.5642-5658, 1993.
54.Nyden, M. R., Petersson, G. A., “Complete Basis Set
Correlation Energies.Ⅰ.The Asymptotic Convergence of Pair
Natural Orbital Expansions,” J.Chem. Phys., 75, pp.1843-
1861, 1981.
55.Petersson, G. A., Al-Laham, M. A., “A Complete Basis Set
Model Chemistry.Ⅱ. Open-Shell Systems and the Total
Energies of the First-Row Atoms ,” J. Chem. Phys., 94,
pp.6081-6090, 1991.
56.Petersson, G. A., Tensfeldt, T. G., Montgomery, J. A., Jr.,
“A Complete Basis Set Model Chemistry.Ⅲ.The Complete Basis
Set-Quadratic Configuration Interaction Family of Methods,”
J. Chem. Phys., 94,pp.6091-6102, 1991.
57.Montgomery, J. A., Jr., Ochterski, J. W., Petersson, G. A.,
“A Complete Basis Set model Chemistry.Ⅳ.An Improved Atomic
Pair Natural Orbital Method,” J. Chem. Phys., 101, pp.5900-
5910, 1994.
58.Ochterski, J. W., Petersson, G. A., Montgomery, J. A., Jr.,
“A Complete Basis Set model Chemistry.Ⅴ.Extensions to Six
or More Heavy Atoms,” J. Chem. Phys., 104, pp.2598-2606,
1996.
59.Montgomery, J. A., Jr., Frisch M. J., Ochterski, J. W.,
Petersson, G. A., “A Complete Basis Set Model Chemistry.
Ⅵ.Use of Densityt Functional Geometries and Frequencies,”
J. Chem. Phys., 110, pp.2822-2834, 1999.
60.Becke, A. D., “Density-functional Thermochemistry Ⅲ. The
Role of Exact Exchange,” J. Chem. Phys., 98, pp.5648-5664,
1993.
61.Frisch, M. A., Pople, John A., Binkley, J. Stephen, “Self-
Consistent Molecular Orbital Methods 25. Supplementary
Functions for Gaussian Basis Sets,” J. Chem. Phys., 80,
pp.3265-3279, 1984.
62.Frisch, A. Eleen, Frisch, M. J., Gaussian 98 User's
Reference, Gaussian Inc., Second Edition, Pittsburgh, PA,
1999.
63.Dewer, M. J. S., Zoebisch, E. G., Healy, E. F., Steward, J.
J. P., “AM1: A New General Purpose Quantum Mechanical
Molecular Model,” J. Am. Chem. Soc., 107, pp.3902-3914,
1985.
64.Hehre, W. J., Radom, L., Schleyer, Paul v.R., Pople, J. A.,
Ab Initio Molecular Orbital Theory, John Wiley & Sons, Inc.,
New York, pp.6-104, 1986.
65.Pople, J. A., Binkley, J. S., Seeger, R., “Theoretical
Models Incorporating Electron Correlation, ” Int. J. Quant.
Chem. Symp, 10, pp.1-12, 1976.
66.Chen, C., Chang C. W., Wang Y. M., “Quantitative
Interpretation of Intra-molecular Hydrogen Bonding by Semi-
Emipirical MO Method,”
J. Mol. Struct. (Theochem), 311, pp.19-30, 1994.
67.Pople, J. A., Beveridge, D. L., Approximate Molecular
Orbital Theory, McGraw-Hill, New York, 1970.
68.陳成、徐雙富、盧力華,“火炸藥分子理論計算(一): 火炸藥爆熱
及安定性之研究,” 中正嶺學報, 19(2),pp.35-41, 1991.
69.陳成、徐雙富、盧力華,“火炸藥分子理論計算(二): 火炸藥爆熱
及安定性之研究,” 中正嶺學報, 19(2),pp.43-49, 1991.
70.Bartmess, J. E., NIST Negative Ion Energetics Database,
Version 3.01, Standard Reference Database 69-February 2000
Release, National Institute of Standards and Technology.
71.Clark, T., Chandrasekhar, J., Spitznagel, G. W., Schleyer,
P. von R., “Efficient Diffuse Function-Augmented Basis Sets
for Anion Calculations.Ⅲ.* The 3-21+G Basis Set for First-
Row Elements, Li-F,” J. Comput.Chem. 4(3), pp.294-301, 1983.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top