1.Catalan, J., Palomar, J., “Gas-Phase Protolysis Between a
Neutral Bronsted Acid and a Neutral Bronsted Base,” Chem.
Phys.Lett., 293, pp.511-514, 1998.
2.Farcasiu, D., Ghenciu, A., “Determination of Acidity
Functions and Acid Strenghs by 13C NMR,” J. Pro. Nuc. Mag.
Reson. Spectr., 29,pp.129-168, 1996.
3.Grandinetti, F., Speranza, M., “Uncommon Eletronic Effects
on the Gas-Phase Bronsted Acidity of Isomeric Hydroxyphenyl- ium Ions,” Chem. Phys.Lett., 229, pp.581-586, 1994.
4.Higgins, P. R., Bartmess, J. E., “The Gas-Phase Acidities of
Long Chain Alcohols,” J. Mass Spectrom. Ion Phys., 175,
pp.71-82, 1998.
5.Zaghloul, A. A., El-Naggar, G. A., El-Shazly, Sh. A., Amira,
M. F., “Solvent Effects on the Dissociation Reactions of
Tartaric, Maleic and Phthalic Acids; Comparative Study and
Analysis of Thermodynamic Functions,” Talanta, 45, pp.189-
201, 1997.
6.Masamura, M., “Ab Initio Study of the Structur of CH3COO- in
Aqueous Solution,” J. Mol. Struct., 466, pp.85-93, 1999.
7.Burk, P., Koppel,I. A., Koppel, I., Leito, I., Travnikova,O.,
“Critical Test of Performance of B3LYP Functional for
Prediction of Gas-Phase Acidities and Basicities,” Chem.
Phys. Lett., 323, pp.482-501, 2000.
8.Fujuio, M., Mclver, R. T., Taft, R. W., “Effects on the
Acidties of Phenols from Specific Substituent-Solvent
Interactions. Inherent Substituent Parameters from Gas-Phase
Acidties,” J. Am. Chem. Soc., 103, pp.4017-4023, 1981.
9.Chen, C., Shyu, Sh. F., “Conformers and Intramolecular
Hydrogen Bonding of Salicylic Acid and Its Anions,” J. Mol.
Struct., 74, pp.395-402, 2000.
10.徐雙富、陳 成、鄭根發,”丙二酸及其離子之理論研究:構形異構
物及分子內氫鍵研究,” 化學, 58(3), pp.407-419, 2000.
11.陳 成、徐雙富、鄭根發,”蘋果酸構形異構物及分子內氫鍵之研
究,”化學, 58(2), pp.241-258, 2000.
12.徐雙富、陳 成,”丙酮酸之理論研究: 構形異構物,甲基超共軛及甲
基轉動能障,” 中正嶺學報,28(2), pp.151-162, 2000.
13.Chen , C., Shyu, Sh. F.,”Theoretical Study of Glyoxylic
Acid and Pyruvic Acid:Rotamers and Intramolecular Hydrogen
Bonding,” J. Mol. Struct., 503, pp.201-209, 2000.
14.Chen, C., Shyu, Sh. F., “ Theoretical Study of Oxalic Acid
and Its Anions,” Int. J. Quant. Chem.,76, pp.541-553, 2000.
15.陳 成、徐雙富、許福生,”乳酸之構形異構物及分子內氫鍵之研究,
“ 中正嶺學報, 28(1), pp.51-62, 1999.
16.Shyu, Sh. F., Chen, C., ”Theoretical Study of Cis-Hydroxyl
Acrylic Acid (cis-CH(OH)=CH(COOH)):Intra-Molecular Hydrogen
Bonding and Conformers,” J. Mol. Struct., 491, pp.133-138,
1999.
17.陳成、陳宏傑、徐雙富,”氣態分子酸度之理論研究,” 化學,58(4),pp.571-582, 2000.
18.Burk, P., Sillar, K., “Acidty of Saturated Hydrocarbons,”
J. Mol. Struct.,(Theochem) 535, pp.49-55, 2001.
19.Rafael Notario; Obis Castano; Jose Luise M. Abboud,
“Regarding the Gas-Phase Acidity of CF3OH,” Chem. Phys.
Lett, 263, pp.367-374,1996.
20.Random, L., “The Chemistry of Gas-Phase Ions: a Theoretical
Approach,” J. Mass Spectrom. Ion Processes, 118, pp.339-344
, 1992.
21.Graul, S. T., Squires, R. R., “Gas-Phase Acidities Derived
from Threshold Energies for Activated Reactions,” J. Am.
Chem. Soc., 112, pp.2517-2524, 1990.
22.Smith, B. J., Radom, L., “Evaluation of Accurate Gas-Phase
Acidities,”J. Phys. Chem., 95, pp.10549-1052, 1991.
23. Frisch, M. J., Truck, G. W., Schlegel, H. B., Scuseria, G.
E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G.,
Montgomary, J. A., Stratmann, R. E., Burant, J. C.,
Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N.,
Strain, M. C., Farkas, O., Tomasi, J., Barone,V.,
Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C.,
Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y.,
Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D.,
Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J.
V., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P.,
Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J.,
Keith,T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A.,
Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B.
G., Chen, W., Wong, M. W., Andres, J. L., Head-Gordon, M.,
Replogle, E. S. and Pople, J. A., Gaussian 98 Revision-A.6,
Gaussian, Inc., Pittsburgh, PA , 1998.
24.Koppel, I. A., Taft, R. W., Anvia, F., Zhu, Sh. Z., Hu, Li
Qu., Sung, K. S., DesMarteau, D. D., Yagupolskii, L. M.,
Yagupolskii, Y. L., Ignat’ev ,N. V., Kondratenko, N. V.,
Volkonskii, A. Y., Vlasov, V. M., Notario, R., Maria, P. C.,
“The Gas-Phase Acidties of Very Strong Neutral Bronsted
Acids,” J.Am. Chem. Soc., 116,pp.3047-3061, 1994.
25.Morrison, R. T., Boyd, R. N., Organic Chemistry, Sixth
Edition, Ch. 19 ,Englewood Cliffs, New Jersey, 1992.
26.Sklenak, S., Gatial, A., Biskupic, S., “ Ab Initio Study of
Small Organic Azides,” J. Mol. Struct.,( Theochem ) 397,
pp.249-254, 1997.
27.Dobbins, R. A., Mohammed, K., “Pressure and Density Series
Equations of State for Steam as Derived from the Haar-
Gallagher-Kell Formation,”J. Phys. Chem. Ref. Data, 17,
pp.1-8, 1988.
28.Lias, S. G., Liebman, J. E., Holmes, J. L., Levin, R. D.,
Mallar, W. G., “ Evaluated Gas Phase Basicities and Proton
Affinities of Molecules; Heats of Formation of Protonated
Molecules,” J. Phys. Chem. Ref. Data, 13, pp.695-808, 1984.
29.Born, M., Ingemann, S., Nibbering, Nico.M., "Thermochemical
Properties of Halogen-Substituted Methanes, Methyl Radicals,
in the Gas Phase,” J. Mass Spectrom., 194, pp.103-115, 2000.
30.Remko, M., “The Gas-Phase Acidities of Substituted Carbonic
Acids,” J. Mol. Struct.(Theochem), 492, pp.203-212, 1999.
31.Remko ,M., Liedl, K. R., Rode, B. M., “Gas-Phase Acidities
of HM(=X)XH(M = C, Si; X = O, S) Acids Calculated by Ab
Initio Molecular Orbital Methods at the G2 Level of Theory,”
Chem. Phys. Lett., 263, pp.379-385, 1996.
32.Taft, R. W., Koppel, I. A., Topsom, R. D., Anvia, F.,
“Acidities of OH Compounds, Inclouding Alcohol, Phenol,
Carboxylic Acids, and Mineral Acids,” J. Am. Chem. Soc.,
112,pp.2047-2052, 1990.
33.Jurric, B. S., “Complete Basis Set, Gaussian, and Density
Functional Theory Study of the Vinylindine-Acetylene
Rearrangement,” J. Mol. Struct. (Theochem), 488, pp.87-96,
1999.
34.Alkotar, I., Elguero, J., “Carbon Acidity and Ring Strain:
a Hybrid HF-DFT Approach (Becke3LYP/6-311++G**),”
Tetrahedron, 53, pp.9741-9753, 1997.
35.Pashkevich, D. S., Muhortov, D. A., Podpalkina, E. A.,
Barabanov, V. G., “Kinetics of Gaseous Fluorination of
1,1,1,2-Tetrafluooethane with Elemental Fluorine,” J.
Fluorine Chem., 96, pp.3-12, 1999.
36.Lier, G. V., Safi, B., Geerlings, P., “Acidty of
Substituted Hydrofullerenes: an Ab Initio Quantum-Chemical
Study,” J. Phys. Chem. Solids, 58,pp.1719-1724, 1997.
37.Gelessus, A., Thiel, W., “Squaric Acid Difluoride,” J.
Fluorine Chem.,99, pp.99-103, 1999.
38.Tanuma, T., Irisawa, J., “Ab Initio 19F NMR Chemical Shifts
Calculations for Halogenated Ethanes and Propanes,” J.
Fluorine Chem., 99, pp.157-162, 1999.
39.Radice, S., Tortelli, V., Causa, M., Castiglioni, C., Zerbi,
G., “Quantum Mechanical Calculations and Spectroscopic
Analysis of Fluorinated Vinyl Ether Molecules,” J. Flourine
Chem., 95, pp.105-111, 1999.
40.Barkalov, I. M., Karnaukh, A. A., “Gas-Phase Fluorination
of Fluorochloromethanes by CF3OF in the Presence of
Oxygen,” J. Flourine. Chem., 96, pp.71-80, 1999.
41.Alkorta, I., Rozas I., Elguero, J., “Effects of Fluorine
Substitution on Hydrogen Bond Interactions,” J. Flourine
Chem., 101, pp.233-242, 2000.
42.Deturi, V. F., Ervin, K. M., “Proton Transfer Between Cl-
and C6H5OH.O-H Bond Energy of Phenol,” J. Mass Spectrom.
Ion Processes, 175,pp.123-131, 1998.
43.Huey, L. G., Dunlea, E. J., Howard, C. J., “Gas-Phase
Acidity of CF3OH,” J. Phys. Chem., 100, pp.6504-6511, 1996.
44.Sutheimer, S. H., Ferraco, M. J., Cabaniss, S. E.,
“Molecular Size Effects on Carboxylic Acidty: Implications
for Humic Substances,”Analy. Chim. Acta, 304, pp.187-192,
1995.
45.Burk, P., Schleyer, P. van Rague, “Why Are Carboxylic Acids
Than Alcohols? The Eletrostatic Theory of Siggel-Thomas
Revisited,” J. Mol. Struct.(Theochem), 505, pp.161-169,
2000.
46.Wenthold, P. G., Squires, R. R., “Gas-Phase Acidities of O-
, M-, P-Dehydrobezoic Acids. Determination of the
Substituent Constants for a Phenyl Radical Site,” J. Mol.
Struct.(Theochem), 175, pp.215, 1998.
47.Foresman, J. B., Frisch A., Exploring Chemistry with
Electronic Structure Methods, 2nd ed., Gaussian Inc.,
Pittsburgh, PA, 1996.
48.McWeeny, R., Dierksen,G.,“ Self-Consistent Perturbation
Theory. Ⅱ. Extension to Open Shells, ” J. Chem. Phys., 49,
pp.4852-4861, 1968.
49.Saebo, S., Almlof, J., “Avoiding the Integral Storage
Bottleneck in LCAO Calculations of Electron Correlation, ”
Chem. Phys. Lett., 154, pp.83-94, 1989.
50.Head-Gordon, Martin, Pople, John A., Frisch, Michael J.,
“MP2 Energy Evaluation by Direct Methods,” Chem. Phys.
Lett., 153, pp.503-510, 1988.
51.Frisch, Michael J., Head-Gordon, Martin, Pople, John A., “A
Direct MP2 Gradient Methods,” Chem. Phys. Lett., 166,
pp.275-283, 1990.
52. Frisch, Michael J., Head-Gordon, Martin, Pople, John A.,
“Semi-Direct Algorithms for the MP2 Energy and Gradient,”
Chem. Phys. Lett., 166, pp.281-301, 1990.
53.Flores, J. R., “High Precision Atomic Computations from
Finite Element techniques: Second-Order Correlation Energies
of Rare Gas Atoms,” J. Chem. Phys., 98,pp.5642-5658, 1993.
54.Nyden, M. R., Petersson, G. A., “Complete Basis Set
Correlation Energies.Ⅰ.The Asymptotic Convergence of Pair
Natural Orbital Expansions,” J.Chem. Phys., 75, pp.1843-
1861, 1981.
55.Petersson, G. A., Al-Laham, M. A., “A Complete Basis Set
Model Chemistry.Ⅱ. Open-Shell Systems and the Total
Energies of the First-Row Atoms ,” J. Chem. Phys., 94,
pp.6081-6090, 1991.
56.Petersson, G. A., Tensfeldt, T. G., Montgomery, J. A., Jr.,
“A Complete Basis Set Model Chemistry.Ⅲ.The Complete Basis
Set-Quadratic Configuration Interaction Family of Methods,”
J. Chem. Phys., 94,pp.6091-6102, 1991.
57.Montgomery, J. A., Jr., Ochterski, J. W., Petersson, G. A.,
“A Complete Basis Set model Chemistry.Ⅳ.An Improved Atomic
Pair Natural Orbital Method,” J. Chem. Phys., 101, pp.5900-
5910, 1994.
58.Ochterski, J. W., Petersson, G. A., Montgomery, J. A., Jr.,
“A Complete Basis Set model Chemistry.Ⅴ.Extensions to Six
or More Heavy Atoms,” J. Chem. Phys., 104, pp.2598-2606,
1996.
59.Montgomery, J. A., Jr., Frisch M. J., Ochterski, J. W.,
Petersson, G. A., “A Complete Basis Set Model Chemistry.
Ⅵ.Use of Densityt Functional Geometries and Frequencies,”
J. Chem. Phys., 110, pp.2822-2834, 1999.
60.Becke, A. D., “Density-functional Thermochemistry Ⅲ. The
Role of Exact Exchange,” J. Chem. Phys., 98, pp.5648-5664,
1993.
61.Frisch, M. A., Pople, John A., Binkley, J. Stephen, “Self-
Consistent Molecular Orbital Methods 25. Supplementary
Functions for Gaussian Basis Sets,” J. Chem. Phys., 80,
pp.3265-3279, 1984.
62.Frisch, A. Eleen, Frisch, M. J., Gaussian 98 User's
Reference, Gaussian Inc., Second Edition, Pittsburgh, PA,
1999.
63.Dewer, M. J. S., Zoebisch, E. G., Healy, E. F., Steward, J.
J. P., “AM1: A New General Purpose Quantum Mechanical
Molecular Model,” J. Am. Chem. Soc., 107, pp.3902-3914,
1985.
64.Hehre, W. J., Radom, L., Schleyer, Paul v.R., Pople, J. A.,
Ab Initio Molecular Orbital Theory, John Wiley & Sons, Inc.,
New York, pp.6-104, 1986.
65.Pople, J. A., Binkley, J. S., Seeger, R., “Theoretical
Models Incorporating Electron Correlation, ” Int. J. Quant.
Chem. Symp, 10, pp.1-12, 1976.
66.Chen, C., Chang C. W., Wang Y. M., “Quantitative
Interpretation of Intra-molecular Hydrogen Bonding by Semi-
Emipirical MO Method,”
J. Mol. Struct. (Theochem), 311, pp.19-30, 1994.
67.Pople, J. A., Beveridge, D. L., Approximate Molecular
Orbital Theory, McGraw-Hill, New York, 1970.
68.陳成、徐雙富、盧力華,“火炸藥分子理論計算(一): 火炸藥爆熱
及安定性之研究,” 中正嶺學報, 19(2),pp.35-41, 1991.
69.陳成、徐雙富、盧力華,“火炸藥分子理論計算(二): 火炸藥爆熱
及安定性之研究,” 中正嶺學報, 19(2),pp.43-49, 1991.
70.Bartmess, J. E., NIST Negative Ion Energetics Database,
Version 3.01, Standard Reference Database 69-February 2000
Release, National Institute of Standards and Technology.
71.Clark, T., Chandrasekhar, J., Spitznagel, G. W., Schleyer,
P. von R., “Efficient Diffuse Function-Augmented Basis Sets
for Anion Calculations.Ⅲ.* The 3-21+G Basis Set for First-
Row Elements, Li-F,” J. Comput.Chem. 4(3), pp.294-301, 1983.