|
[1]Hazelton, D. M., “Energy Considerations for Hypersonic Testing,” AIAA Paper 98-3130, 1998. [2]Lu, F. K., “Recent Advances in Detonation Techniques for High-Enthalpy Facilities,” AIAA Paper 98-0550, 1998. [3]Anderson, J. D., Jr., Modern Compressible Flow, New York, MacGraw-Hill, Chap. 7, pp. 206-241, 1990. [4]Bertin, J. J., Hypersonic Aerothermodynamics, Washington, DC, American Institute of Aeronautics and Astromautics, Inc., Chap. 4, pp.157-201, 1994. [5]Lukasiewicz, J., Experimental Methods of Hypersonics, New York, Marcel Dekker, Inc., Chap. 13,14, pp.153-184, 1973. [6]Park, C., Nonequilibrium Hypersonic Aerothermodynamics, New York, John Wiley & Sons, Inc., Chap. 7, pp.233-254, 1990. [7]Tannehill, J. C., and Mugge, P. H., “Improved Curve Fits for the Thermodynamic Properties of Equilibrium Air Suitable for Numerical Computation Using Time-Dependent or Shock-Capturing Methods,” NASA CR-2470, 1974. [8]Bogdanoff, D. W., and Cambier J., “Increase of Stagnation Pressure and Enthalpy in Shock Tunnels,” AIAA Paper 93-0350, 1993. [9]Wilson, G. J., Sharma, S. P. and Gillespie, W. D., “Time-Dependent Simulation of Reflected-Shock/Boundary Layer Interaction,” AIAA Paper 93-0480, 1993. [10]Mark, H., “The Interaction of a Reflected Shock Wave with the Boundary Layer in a Shock Tube,” NACA TM 1418, 1958. [11]Matsuo, K., Kawagoe, S. and Kage, K., “The Interaction of a Reflected Shock Wave with Boundary Layer in a Shock Tube,” Bulletin of the JSME, Vol. 17, No. 110, pp. 1039-1046, 1974. [12]Davis, L., “The Interaction of a Reflected Shock Wave with the Boundary Layer in a Shock Tube and its Influence on the Duration of Hot Flow in the Reflected Shock Tunnel. Part I,” Aeronautical Research Council-Cp-880, 1966. [13]Mirels, H., “Attenuation in a Shock Tube Due to Unsteady Boundary-Layer Action,” NASA Report 1333, 1956. [14]Amann, H. O., “Experimental Study of a Starting Process in a Reflection Nozzle,” Physics of Fluids, Vol.12, No.5, pp. 150-153, 1969. [15]Ben-Dor, G., Shock Wave Reflection Phenomena, New York, Springer-Verlag, 1992. [16]Lu, F. K., “Initial Operation of the UTK Shock Tunnel,” AIAA Paper 92-0331, 1992. [17]Roshko, A., “ On Flow Duration in Low-Pressure Shock Tubes,” The Physics of Fluids, Vol.3, No.6, pp. 835-842, 1960. [18]Mirels, H., “Laminar Boundary Layer behind a Strong Shock Moving into Air,” NASA TN D-291, 1961. [19]Hooker, W. J., “Testing Time and Contact-Zone Phenomena in Shock-Tube Flows,” The Physics of Fluids, Vol.4, No.12, pp. 1451-1462, 1961. [20]Mirels, H., “Test Time in Low-Pressure Shock Tubes,” The Physics of Fluids, Vol.6, No.9, pp. 1201-1214, 1963. [21]Sharma, S. P., and Wilson, G., “Test Times In Hypersonic Shock Tubes,” AIAA Paper 95-0713, 1995. [22]Bull, D. C., and Edwards, D. H., “ An Investigation of the Reflected Shock Interaction Process in a Shock Tube,” AIAA Journal, Vol.6, No.8. pp. 1549-1555, 1968. [23]Matsuo, K., Kage, K., and Kawagoe, S., “The Interaction of a Reflected Shock Wave with the Contact Region in a Shock Tube,” Bulletin of the JSME, Vol. 18, No. 121, pp. 681-688, 1975. [24]Weber, Y. S., Anderson. J. D. Jr., Oran, E. S., and Boris, J. P., “The Numerical Simulation of Shock Bifurcation Near the End Wall in a Shock Tube,” AIAA Paper 94-2307, 1994. [25]Smith, C. E., “The Starting Process in a Hypersonic Nozzle,” J. Fluid Mech., Vol.24, part4, pp. 625-640, 1966. [26]Lee, M. G. and Nishida M., “Numerical Analysis of Unsteady Nozzle Flow by Shock Wave,” JSME Journal, Vol. 60, No.575, pp. 2267-2272, 1994. [27]Tokarcik-Polsky, S., and Cambier, J., “Numerical Study of Transient Flow Phenomena in Shock Tunnels,” AIAA Journal, Vol. 32, No.5, pp. 971-978, 1994. [28]Cambier, J. L., Tokarcik-Polsky, S. and Prabhu, D. K., “Numerical Simulation of Unsteady Flow in a Hypersonic Shock Tunnel Facility,” AIAA Paper 92-4029, 1992. [29]Tokarcik-Polsky, S., and Cambier, J., “Numerical Study of the Transient Flow in the Driven Tube and Nozzle Section of a Shock Tunnel”, AIAA Paper 93-2018, 1993. [30]Chen, C. L., Chakravarthy, S. R., “Numerical Investigation of Separated Nozzle Flows,” AIAA Journal, Vol. 32, No. 9, pp. 1836-1843, 1994. [31]Lee, M. G., and Murakami, T., “Computational and Experimental Studies of Unsteady Viscous Nozzle Flows,” JSME. Vol.38, No. 3. pp.346-352. 1995. [32]Lee, J. Y., and Lewis, M. J., “A numerical Study of the Flow Establishment Time in Hypersonic Shock Tunnels,” AIAA paper 91-1463, 1991 [33]Igra O., Wang L., Falcovitz J., and Amann O., “Simulation of the Starting Flow in a Wedge-like Nozzle,” Shock Waves, Vol.8, Issue.4, pp.235-242, 1998. [34]Saito T, and Takayama K., “Numerical Simulations of Nozzle Starting Process,” Shock Waves, Vo1.9, Issue.2, pp.73-79, 1999. [35]Erdos, J. I., Bakos, R. J., Castrogiovanni, A., and Rogers, R. C., “Dual Mode Shock-Expansion/Reflected-Shock Tunnel,” AIAA Paper 97-0560, 1997. [36]Cavolowsky, J. A., Loomis, M. P., Bogdanoff, D. W., Zambrana, H. A., Newfield, M. E., and Tam, T. C., “Flow Characterization In The NASA Ames 16-inch Shock Tunnel,” AIAA Paper 92-3810, 1992. [37]Stuessy, W. S., Lu, F. K., and Wilson, D. R., “Shock-induced Detonation Wave Driver for Enhancing Shock Tube Performance,” AIAA Paper 98-0549, 1998. [38]Sudani, N., Valiferdowsi, B., and Hornung, H. G., “Test Time Increase by Delaying Driver Gas Contamination for Reflected Shock Tunnels,” AIAA Paper 98-2771, 1998. [39]Wilson, G. J., Sussman, M. A., and Loomis, M. P., “The Use of Nitrous Oxide to Increase Test Times in High Enthalpy Reflected Shock Tunnels,” AIAA Paper 94-2597, 1994. [40]Felling, M. M., Page, R. H., Korst, H. H., and White, R. A., “ An Experimental Analysis and Demonstration of the Non-Steady Flow in a Shock Tube,” AIAA Paper 93-0423, 1993. [41]Lu, F. K., Wilson, D. R., and Stuessy, W. S., “Recent Advances in Detonation Techniques for High-Enthalpy Facilities,” AIAA Paper 98-0550, 1998. [42]Bogdanoff, D. W., and Cambier J., “Increase of Stagnation Pressure and Enthalpy in Shock Tunnels,” AIAA Paper 93-0350, 1993. [43]Rossmann, T., Mungal, M. G., and Hanson, R. K., “A New Shock Tunnel Facility for High Compressibility Mixing Layer Studies,” AIAA Paper 99-0415, 1999. [44]Chue, R. S. M., and Eitelberg, G., “Studies of the Transient Flows in High Enthalpy Shock Tunnels,” Experiments in Fluids, pp. 474-486, 1998. [45]Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena, New York, John Wiley & Sons, Inc., 1960. [46]Vincenti, W. G. and Kruger, C. H. Introduction to Physical Gas Dynamics, John Wiley & Sons, 1960. [47]Wilke, C. R., “A Viscosity Equation for Gas Mixtures,” Journal of Chemical Physics, Vol. 18, No.4, pp. 517-519, 1950. [48]Jameson, A., Schmidt, W., and Turkel, E., “Numerical Solutions of the Euler Equations by a Finite Volume Method Using Runge-Kutta Time-stepping Schemes,” AIAA Paper 81-1259, 1981. [49]Hirsch, C., Numerical Computation of Internal and External flow, Vol. 1, New York, John Wiley & Sons. Chap. 6, 1989. [50]Roe, P. L., “Approximate Riemann Solvers, Parameter Vector, and Difference Schemes,” Journal of Computational Physics, Vol. 43, pp. 357-372, 1981. [51]van Leer, B., Lee, W. T. and Powell, K., “Sonic-Point Capturing,” AIAA Paper 89-1945, 1989. [52]van Leer. B., “Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov’S Method,” Journal Computational Physics, Vol.32, pp.101-136, 1979. [53]Roe, P. L., “Some Contributions to the Modeling of Discontinuous Flows,” Proc. 1983 AMS-SIAM Summer Seminar on Large Scale Computing in Fluid Mechanics, Lectures in Applied Mathematics, Vol.22, pp.163-193, 1985. [54]Harten, A., “On the Nonlinearity of Modern Shock Capturing Schemes,” ICASE Report 86-69, 1986 [55]Sweby, P. K., “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws,” SIAM J. Numerical Analysis, Vol.21, pp.995-1011, 1984. [56]Tai, C. H., Chiang, D. C., and Su, Y. P., “Explicit Time Marching Method for the Time-Dependent Euler Computations,” Journal of Computational Physics, Vol.130, pp.191-202, 1997.
|