跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/11 07:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李峻溪
研究生(外文):Li Chun-Chi
論文名稱:極音速反射型震波風洞內部暫態流場機制之數值模擬研究
論文名稱(外文):The Study of Numerical Simulation of Hypersonic Flow Mechanism within the Reflected Shock Tunnel with Hypersonic Flow
指導教授:戴昌賢戴昌賢引用關係苗志銘苗志銘引用關係
指導教授(外文):Tai Chang-HsienMiao Jr-Ming
學位類別:博士
校院名稱:國防大學中正理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:115
中文關鍵詞:反射型震波風洞反射震波/邊界層交互作用起始過程平衡流流體設立時間
外文關鍵詞:Reflected shock tunnelReflected shock/boundary layer interactionStarting processEquilibrium flowFlow establishment time
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文利用數值模擬,對一反射型震波風洞進行全域的流場模擬,探討整個吹試過程間所發生的暫態流場機制,從第一道隔板破裂開始至吹試過程結束,完整的呈現此期間所發生的暫態流場現象,包含了反射模式發生前的流場特徵,反射震波與接觸不連續面的波交互作用、反射震波/邊界層交互作用引起的震波分叉與壁面噴流現象,以及起始過程中所發生的震波反射、二次震波與分離流等等的現象,最後在測試區中加入一圓球模型,估算其從穩定設立時間開始到結束的暫態流場變化。
統御方程式為三維依時性那維爾-史托克方程式,加入混合成份方程式(驅動段:氦氣、被驅動段:空氣)求解,並以熱力性質多項式修正比熱比,以考量高溫引起的真實氣體效應。數值方法為有限體積法、算則採用顯式上風法及TVD法,為增進計算效率,計算域網格採適形、多區塊,特別在噴嘴附近的格點製作,以多層網格綴接的方式製作。程式驗證以Amann二維噴嘴實驗的模擬,驗證本程式具良好之準確性。此外,研究三種不同模式之比熱比的差異性,並改變第二道隔板的強度、調整噴嘴半角的角度對流場的影響。
本文最終的目的是想藉全域流場的模擬,了解影響風洞吹試的流場機制,提供實驗者在針對風洞吹試前之先期準備及改進實驗程序,減少風洞吹試的花費。
The aim of this thesis is to develop a CFD solver used to simulate the transient flow phenomena in a reflected shock tunnel. These transient flow phenomena include the wave interaction of reflected shock and contact discontinuity, the reflected shock/boundary layer interaction and the starting process of nozzle flow that can affect the duration of test flow in actual conditions. In addition, the flow establishment time of a sphere model in the test section is calculated in this model.
To numerically simulate these transient flow features, a full-size, axisymmetric reflected shock tunnel model is used. The governing equations are the full Navier-Stokes equations, a species equation and a simplified polynomial correlation to simulate the real gas effects. The numerical code has been developed based on the finite volume method coupled with the upwind Roe’s scheme and the total variation diminishing (TVD) method. To increase the calculation efficiency, a multi-block and multi-mesh grid generation techniques are employed in a huge computational domain. The validation of the present code is done to compare with the Amann’s experiment data with a good agreement. By the way, the strength of the secondary diaphragm, the half nozzle angle effect and the difference of the viscous, frozen and equilibrium flows have simulated in this work.
The present computational results have not only confirmed the theoretical characteristics of a shock tube, but also qualitatively presented the phenomena of the transient flow features. This numerical code is a useful tool to demonstrate the actual flow phenomena and to assist the design of experiments.
封面
致謝
摘要
ABSTRACT
目錄
圖錄
符號與縮寫
1.緒論
2.研究內容
2.1反射型震波風洞原理說明
2.2真實氣體效應
2.3實驗暫態流場現象
2.3.1反射震波/邊界層交互作用
2.3.2噴嘴暫態流場
2.4文獻回顧
2.5研究重點
3.問題描述
4研究方法
4.1統禦方程式
4.2數值方法
5結果與討論
5.1各式驗證
5.2反射模式發生前之震波管流場驗證
5.3三種不同模式比熱比的比較
5.4震波管段波交互作用的探討
5.5反射震波/邊界層交互作用之數值模擬
5.6噴嘴起始過程之暫態模擬
5.7風洞測試時間之起迄估算
5.8第二道隔板強度改變對流場的影響
6結論
參考文獻
論文發表
自傳
[1]Hazelton, D. M., “Energy Considerations for Hypersonic Testing,” AIAA Paper 98-3130, 1998.
[2]Lu, F. K., “Recent Advances in Detonation Techniques for High-Enthalpy Facilities,” AIAA Paper 98-0550, 1998.
[3]Anderson, J. D., Jr., Modern Compressible Flow, New York, MacGraw-Hill, Chap. 7, pp. 206-241, 1990.
[4]Bertin, J. J., Hypersonic Aerothermodynamics, Washington, DC, American Institute of Aeronautics and Astromautics, Inc., Chap. 4, pp.157-201, 1994.
[5]Lukasiewicz, J., Experimental Methods of Hypersonics, New York, Marcel Dekker, Inc., Chap. 13,14, pp.153-184, 1973.
[6]Park, C., Nonequilibrium Hypersonic Aerothermodynamics, New York, John Wiley & Sons, Inc., Chap. 7, pp.233-254, 1990.
[7]Tannehill, J. C., and Mugge, P. H., “Improved Curve Fits for the Thermodynamic Properties of Equilibrium Air Suitable for Numerical Computation Using Time-Dependent or Shock-Capturing Methods,” NASA CR-2470, 1974.
[8]Bogdanoff, D. W., and Cambier J., “Increase of Stagnation Pressure and Enthalpy in Shock Tunnels,” AIAA Paper 93-0350, 1993.
[9]Wilson, G. J., Sharma, S. P. and Gillespie, W. D., “Time-Dependent Simulation of Reflected-Shock/Boundary Layer Interaction,” AIAA Paper 93-0480, 1993.
[10]Mark, H., “The Interaction of a Reflected Shock Wave with the Boundary Layer in a Shock Tube,” NACA TM 1418, 1958.
[11]Matsuo, K., Kawagoe, S. and Kage, K., “The Interaction of a Reflected Shock Wave with Boundary Layer in a Shock Tube,” Bulletin of the JSME, Vol. 17, No. 110, pp. 1039-1046, 1974.
[12]Davis, L., “The Interaction of a Reflected Shock Wave with the Boundary Layer in a Shock Tube and its Influence on the Duration of Hot Flow in the Reflected Shock Tunnel. Part I,” Aeronautical Research Council-Cp-880, 1966.
[13]Mirels, H., “Attenuation in a Shock Tube Due to Unsteady Boundary-Layer Action,” NASA Report 1333, 1956.
[14]Amann, H. O., “Experimental Study of a Starting Process in a Reflection Nozzle,” Physics of Fluids, Vol.12, No.5, pp. 150-153, 1969.
[15]Ben-Dor, G., Shock Wave Reflection Phenomena, New York, Springer-Verlag, 1992.
[16]Lu, F. K., “Initial Operation of the UTK Shock Tunnel,” AIAA Paper 92-0331, 1992.
[17]Roshko, A., “ On Flow Duration in Low-Pressure Shock Tubes,” The Physics of Fluids, Vol.3, No.6, pp. 835-842, 1960.
[18]Mirels, H., “Laminar Boundary Layer behind a Strong Shock Moving into Air,” NASA TN D-291, 1961.
[19]Hooker, W. J., “Testing Time and Contact-Zone Phenomena in Shock-Tube Flows,” The Physics of Fluids, Vol.4, No.12, pp. 1451-1462, 1961.
[20]Mirels, H., “Test Time in Low-Pressure Shock Tubes,” The Physics of Fluids, Vol.6, No.9, pp. 1201-1214, 1963.
[21]Sharma, S. P., and Wilson, G., “Test Times In Hypersonic Shock Tubes,” AIAA Paper 95-0713, 1995.
[22]Bull, D. C., and Edwards, D. H., “ An Investigation of the Reflected Shock Interaction Process in a Shock Tube,” AIAA Journal, Vol.6, No.8. pp. 1549-1555, 1968.
[23]Matsuo, K., Kage, K., and Kawagoe, S., “The Interaction of a Reflected Shock Wave with the Contact Region in a Shock Tube,” Bulletin of the JSME, Vol. 18, No. 121, pp. 681-688, 1975.
[24]Weber, Y. S., Anderson. J. D. Jr., Oran, E. S., and Boris, J. P., “The Numerical Simulation of Shock Bifurcation Near the End Wall in a Shock Tube,” AIAA Paper 94-2307, 1994.
[25]Smith, C. E., “The Starting Process in a Hypersonic Nozzle,” J. Fluid Mech., Vol.24, part4, pp. 625-640, 1966.
[26]Lee, M. G. and Nishida M., “Numerical Analysis of Unsteady Nozzle Flow by Shock Wave,” JSME Journal, Vol. 60, No.575, pp. 2267-2272, 1994.
[27]Tokarcik-Polsky, S., and Cambier, J., “Numerical Study of Transient Flow Phenomena in Shock Tunnels,” AIAA Journal, Vol. 32, No.5, pp. 971-978, 1994.
[28]Cambier, J. L., Tokarcik-Polsky, S. and Prabhu, D. K., “Numerical Simulation of Unsteady Flow in a Hypersonic Shock Tunnel Facility,” AIAA Paper 92-4029, 1992.
[29]Tokarcik-Polsky, S., and Cambier, J., “Numerical Study of the Transient Flow in the Driven Tube and Nozzle Section of a Shock Tunnel”, AIAA Paper 93-2018, 1993.
[30]Chen, C. L., Chakravarthy, S. R., “Numerical Investigation of Separated Nozzle Flows,” AIAA Journal, Vol. 32, No. 9, pp. 1836-1843, 1994.
[31]Lee, M. G., and Murakami, T., “Computational and Experimental Studies of Unsteady Viscous Nozzle Flows,” JSME. Vol.38, No. 3. pp.346-352. 1995.
[32]Lee, J. Y., and Lewis, M. J., “A numerical Study of the Flow Establishment Time in Hypersonic Shock Tunnels,” AIAA paper 91-1463, 1991
[33]Igra O., Wang L., Falcovitz J., and Amann O., “Simulation of the Starting Flow in a Wedge-like Nozzle,” Shock Waves, Vol.8, Issue.4, pp.235-242, 1998.
[34]Saito T, and Takayama K., “Numerical Simulations of Nozzle Starting Process,” Shock Waves, Vo1.9, Issue.2, pp.73-79, 1999.
[35]Erdos, J. I., Bakos, R. J., Castrogiovanni, A., and Rogers, R. C., “Dual Mode Shock-Expansion/Reflected-Shock Tunnel,” AIAA Paper 97-0560, 1997.
[36]Cavolowsky, J. A., Loomis, M. P., Bogdanoff, D. W., Zambrana, H. A., Newfield, M. E., and Tam, T. C., “Flow Characterization In The NASA Ames 16-inch Shock Tunnel,” AIAA Paper 92-3810, 1992.
[37]Stuessy, W. S., Lu, F. K., and Wilson, D. R., “Shock-induced Detonation Wave Driver for Enhancing Shock Tube Performance,” AIAA Paper 98-0549, 1998.
[38]Sudani, N., Valiferdowsi, B., and Hornung, H. G., “Test Time Increase by Delaying Driver Gas Contamination for Reflected Shock Tunnels,” AIAA Paper 98-2771, 1998.
[39]Wilson, G. J., Sussman, M. A., and Loomis, M. P., “The Use of Nitrous Oxide to Increase Test Times in High Enthalpy Reflected Shock Tunnels,” AIAA Paper 94-2597, 1994.
[40]Felling, M. M., Page, R. H., Korst, H. H., and White, R. A., “ An Experimental Analysis and Demonstration of the Non-Steady Flow in a Shock Tube,” AIAA Paper 93-0423, 1993.
[41]Lu, F. K., Wilson, D. R., and Stuessy, W. S., “Recent Advances in Detonation Techniques for High-Enthalpy Facilities,” AIAA Paper 98-0550, 1998.
[42]Bogdanoff, D. W., and Cambier J., “Increase of Stagnation Pressure and Enthalpy in Shock Tunnels,” AIAA Paper 93-0350, 1993.
[43]Rossmann, T., Mungal, M. G., and Hanson, R. K., “A New Shock Tunnel Facility for High Compressibility Mixing Layer Studies,” AIAA Paper 99-0415, 1999.
[44]Chue, R. S. M., and Eitelberg, G., “Studies of the Transient Flows in High Enthalpy Shock Tunnels,” Experiments in Fluids, pp. 474-486, 1998.
[45]Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena, New York, John Wiley & Sons, Inc., 1960.
[46]Vincenti, W. G. and Kruger, C. H. Introduction to Physical Gas Dynamics, John Wiley & Sons, 1960.
[47]Wilke, C. R., “A Viscosity Equation for Gas Mixtures,” Journal of Chemical Physics, Vol. 18, No.4, pp. 517-519, 1950.
[48]Jameson, A., Schmidt, W., and Turkel, E., “Numerical Solutions of the Euler Equations by a Finite Volume Method Using Runge-Kutta Time-stepping Schemes,” AIAA Paper 81-1259, 1981.
[49]Hirsch, C., Numerical Computation of Internal and External flow, Vol. 1, New York, John Wiley & Sons. Chap. 6, 1989.
[50]Roe, P. L., “Approximate Riemann Solvers, Parameter Vector, and Difference Schemes,” Journal of Computational Physics, Vol. 43, pp. 357-372, 1981.
[51]van Leer, B., Lee, W. T. and Powell, K., “Sonic-Point Capturing,” AIAA Paper 89-1945, 1989.
[52]van Leer. B., “Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov’S Method,” Journal Computational Physics, Vol.32, pp.101-136, 1979.
[53]Roe, P. L., “Some Contributions to the Modeling of Discontinuous Flows,” Proc. 1983 AMS-SIAM Summer Seminar on Large Scale Computing in Fluid Mechanics, Lectures in Applied Mathematics, Vol.22, pp.163-193, 1985.
[54]Harten, A., “On the Nonlinearity of Modern Shock Capturing Schemes,” ICASE Report 86-69, 1986
[55]Sweby, P. K., “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws,” SIAM J. Numerical Analysis, Vol.21, pp.995-1011, 1984.
[56]Tai, C. H., Chiang, D. C., and Su, Y. P., “Explicit Time Marching Method for the Time-Dependent Euler Computations,” Journal of Computational Physics, Vol.130, pp.191-202, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top