跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 00:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江鴻儒
研究生(外文):Chiang Hung Lu
論文名稱:循環伏安及電鍍法製備釕電極在電化學電容器的應用
論文名稱(外文):Ruthenium-Coated Electrodes Prepared by Cyclic Voltammetry and Electroplating for the Application of Electrochemical Capacitor
指導教授:胡啟章
指導教授(外文):Chi-Chang Hu
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:釕金屬電化學電容器
外文關鍵詞:Ru-metalElectrochemical Capacitor
相關次數:
  • 被引用被引用:25
  • 點閱點閱:991
  • 評分評分:
  • 下載下載:138
  • 收藏至我的研究室書目清單書目收藏:0
本文的目的在於研究以電鍍法製備釕金屬電極經過不同電位範圍的循環伏安老化行為,及經熱處理後是否合適於電化學電容器之應用,且與利用循環伏安法成長的含水釕氧化物做比較。由循環伏安法所製備的含水釕氧化物,比利用電鍍法製備的釕金屬更具有可逆的氧化還原特性,且不會因上限電位的不同而產生新的氧化/還原峰。以電鍍法所製備的釕金屬電極,其氧化還原反應會隨著電位的不同而有不同的氧化態氧化物生成與還原,其反應式可能為:
A(釕金屬) ↔ B(價數較低氧化態) → C(價數較高氧化態)
。且在不同電位範圍的老化,使得價數低的氧化態及價數高的氧化態的釕氧化物存在於電極上,價數低的氧化態氧化物可以被還原為金屬,因此會有氫吸/脫附反應發生,而價數高的氧化態者會使其CV圖類似長方形,但因不可還原之故,所以不會有氫吸脫附的反應發生。含水釕氧化物在經過高低電位範圍的老化後,含水釕氧化物的準電容有稍微的下降,此與Ru、OH、H2O與少量Cl的聚集体經緩慢的分子重排後,轉變成較穩定的結構或狀態有關,這可由老化前後的SEM圖證實。
熱處溫度大於300℃以上,並經過鍛燒1個小時後,可使得釕金屬電極的伏安行為具有較佳的穩定性,且行為接近於理想的電化學電容器。而在熱處理及老化後,鍛燒溫度低於400℃的電極會因老化而溶解,當鍛燒溫度大於400℃後,老化行為會促使表面成為多孔性的結構,活性位置增加。故利用電鍍所製備的釕金屬電極須經適當的鍛燒後,雖然準電容會喪失,但只要再經過老化後就會使得準電容量增大,且其穩定性與伏安行為會更佳,而更適合於電化學電容器的應用。
The purpose of this work is to study the electrochemical properties of the Ru-coated electrodes pretreated with 100 cycles of CV in different potential ranges and annealed in air for 1 hr for the application of electrochemical capacitors. There results were compared with the hydrous ruthenium oxides prepared by cyclic voltammetry. The electrochemical reversibility of the redox tramsitions on the hydrous ruthenium oxides (RuOx·nH2O) is higher than that on the Ru-coated electrode. In addition, new oxidation/redution peaks were found on the Ru-coated electrode when the upper potential limits of CV were charged. The redox transitions of oxides were simply expressed as : A( Ru metal)↔B(lower oxidation state of Ru oxide)→C(higher oxidation state of Ru oxide). The amount of Ru oxides in different oxidation states was strongly dependent upon the potential range of CV. Ruthenium oxides in lower oxidation states can be reduced to ruthenium metal,which can be adsorbed/desorbed by hydrogen. Cyclic voltammograms of the Ru oxides in higher oxidation states possed a rectangular shope without the hydrogen respreses. Since the aggregates of Ru, OH, H2O and few Cl would be rearranged by the repeated CV to form a more stable structure, the pseudo capacitance of ruthenium been cycled at different ranges would be reduced, which was supported by scanning electron microscopy(SEM) results.
When the Ru-coated deposits were annealed in air for 1 hr at temperature > 300℃, the Ru-coated electrode would be more stable,which exhibited the behavior similar to ideal electrochemical capacitors. However Ru oxides would be dissolved by the potential cycling in 0.5 M H2SO4 when they were annealed in air for 1 hr at temperature ≤400℃. The surface of Ru-coated deposits would become porous and the active site would be increased at annealing temperature ≥400℃.Although the pseudo capacitance of Ru-coated electrode would be reduced by annealing, the pseudo capacitance would be increased by potential cycling for 2000 cycles. These Ru-coated electrodes became more stable and applicable to the electrochemical capacitor.
第一章緒 論………………………………………………………1
1-1電化學原理………………………………………………. ...1
1-1-1 電化學反應系統……………………………………….1
1-1-2 影響電化學的反應因素………………………………2
1-2 金屬氧化物電極……………………………………………..3
1-2-1 金屬氧化物電極的種類與用途………………………..3
1-2-2 金屬氧化物電極的製備方法…………………………..5
1-3 電化學電容器………………………………………………..8
1-3-1 電化學電容器的分類…………………………………..8
1-3-2 電化學電容器的量測………………………………….11
1-3-3 影響電化學電容器特性的因素………………………...14
1-4 研究動機與本文大綱…………………………………….19
第二章 實驗方法與步驟…………………………………………….21
  2-1 電極製作…………………………………………………..21
2-1-1 電極基材的前處理……………………………………21
   2-1-2 循環伏安法及電鍍法…………………………………21
2-1-3 熱處理釕金屬電極……………………………………22
2-2 電化學測試…………………………………………………22
2-2-1 循環伏安實驗………………………………………..23
2-2-2 充放電實驗…………………………………………..23
2-2-3 可逆性………………………………………………..25
  2-3 材料分析……………………………………………………25
  2-4 使用儀器及藥品……………………………………………25
第三章 循環伏安及電鍍法製備之釕電極的電化學行為探討及比較
  3-1循環伏安老化處理對電鍍法置製備之釕電極的影響.....27   
 3-2不同電位範圍的老化處理對循環伏安法製備之釕電極的探討
………………………………………………………………41
3-3 電鍍法及循環伏安法製備釕電極的比較…………………50
3-3-1電鍍法及循環伏安法未經過老化的比較…………….50
3-3-2 經過老化處理之比較…………………………………54
3-4 電極之材料分析……………………………………………54
  3-5 結論…………………………………………………………60
第四章 熱處理後對釕電極電化學特性及材料特性的影響……….62
4-1 不同熱處理溫度對釕金屬電極循環伏安行為的探討……62
4-2 老化對不同熱處溫度釕金屬電極的影響…………………72
4-3熱處理對釕金屬電極結晶性變化的影響………………….84
4-4熱處理對釕金屬電極表面型態的影響…………………….89
4-5 結論…………………………………………………………94
第五章 總結與展望………………………………………………….96
參考文獻………………………………………………………………99
1.A. J. Bard and L. R. Faulkner, “Electrochemical Methods, Fundamentals and Applications”,John Wiley & Sons, Singapore (1980).
2.D. Pletcher, “A First Course in Electrode Processes”, The Electrochemical Consultancy, England (1991).
3.D. R. Crow, “Principles and Applications of Electrochemistry”, 2nd Ed. Chapman and Hall Ltd. London (1979).
4.D. Pletcher and F. C. Walsh, “Industrial Electrochemistry”, Chapman and Hall Ltd. N. Y. (1990).
5.H. Wendt, “Electrocatalysis in Organic Electrochemistry”, Electrochim. Acta, 29 1513 (1984).
6.Reza Karimi Shervedani and Andrzej Lasia “Studies of the Hydrogen Evolution Reaction on Ni-P Electrodes,” J.Electrochem. Soc., 144, 511(1997).
7.A. M. Couper, D. Pletcher, and F. C. Walsh, Chem. Rev., 90, 837(1990).
8.S. Trasatti, “Physical Electrochemistry of Ceramic Oxides”, Electrochim. Acta, 36, 225 (1991).
9.T.-C. Wen and C.-C. Hu.,”Hydrogen and Oxygen Evolutions on Ru-Ir Binary Oxides” ,J Electrochem. Soc., 139, 2158 (1992).
10.L. Nanni, S. Polizzi, A. Benedetti, and A.D. Battisti, “Morphology, Microstructure, and Electrocatalytic Properties of RuO2-SnO2 Thin Films” J. Electrochem. Soc., 146 , 220-225 (1999).
11.M. Ito, Y. Murakami, H. Kaji, K. Yahikozawal, and Y. Takasu, “Surface Characterization of RuO2-SnO2 Coated Titanium Electrodes” J. Electrochem. Soc., 143, 32-36(1996).
12.F.I. Mattos-Costa, P. de Lima-Neto, S.A.S. Machado, L.A. Avaca, “Characterisation of surfaces modified by sol-gel derived RuxIr1-xO2 coatings for oxygen evolution in acid medium” Electrochimica. Acta , 44, 1515-1523(1998).
13.J. G. D. Haenen, W. Visscher and E. Barendrecht,” Oxygen Elvolution on NiCo2O4 Electrodes,” Journal Applied Electrochem., 15, 29-38 (1985).
14.M. Blouin and D. Guay, “Activation of Ruthenium Oxide, Iridium Oxide, and Mixed RuxIr1-x Oxide Electrode during Cathodic Polarization and Hydrogen Evolution,” J. Electrochem. Soc., 144, 573-581 (1997).
15.J. C. F. Boodts, S. Trasatti, “Hydrogen evolution on iridium oxide cathodes”, J. Applied Electrochem., 19, 255-262 (1989).
16.G. Lodi, E. Sivieri, A. DeBattisti and S. Trasatti, “Ruthenium Dioxide-Based Film Electrodes. Ⅲ.Effect of Chemical Composition and Surface Morphology on Oxygen Evolution in Acid Solution,” Journal Applied Electrochem., 8, 135-143 (1978).
17.J. P. Zheng and T. R. jow, “A New Charge Strage Mechanism for Electrochemical Capacitors,” J. Electrochem. Soc., 142, L6-L8 (1995)
18.J. P. Zheng, P. J. Cygan, and T. R.Jow, “Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors,” J. Electrochem. Soc., 142, 2699-2703 (1995).
19.B. V. Tilak and C.-P. Chen, “Material for Electrochemical Capacitors”, J. Electrochem. Soc., 143, 3791-3799(1996).
20.J. P. Zheng, T. R. Jow, “High energy and high power density electrochemical capacitors,” J. Power Sources ., 62, 155-159(1996).
21.B. E. Conway, “Transition from Supercapacitor to Battery Behavior in Electrochemical Energy Storage,” J. Electrochem. Soc., 138, 1539-15553 (1991).
22.Lipka, S. M., “Electrochemical Capacitors Utilizing Low Surface Area Carbon Fiber”, IEEE, 27, 1997.
23.I. Tanahashi ,A. Yoshida , and A. Nishino, J.Electroanal. Soc., 137, 3052(1990).
24.S. Hadzi-Jordanov, H. Angerstein-Kozlowska, M. Vukovic and B. E. Conway, “Reversibility and Growth Behavior of Surface Oxide Films at Ruthenium Electrode”, J, Electrochem. Soc., 125, 1471-1480 (1978).
25.J. Augustynski, L. Balsenc, and J. Hinden, “ X-Ray Photoelectron Spectroscopic Studies of RuO2-Based Film Electrodes”, J. Electrochem. Soc., 125, 1093-1097(1978).
26.R. Otogawa, M. Morimitsu, and M. Matsunaga, “Effect of microstructure of IrO2-based anodes on electrocatalytic properties”, Electrochimica Acta, 44, 1509-1513(1998).
27.J. M. Marracino, F. Coeuret and S. Langlois, “A first Investigation of Flow-Through Porous Electrodes Made of Metallic Felts or Foams”, Electrochim. Acta, 32, 1303-1309(1987).
28.S. Langlois and F. Coeuret, “Flow-Through and Flow-By Porous Electrodes of Nickel Foam. I, Material Characterization”, J. Appl. Electrochim., 19, 43-50(1989).
29.R. P. Simpraga and B. E. Conway, “The real-are scaling factor in electrocatalysis and in charge storage by supercapacitors”, Electrochim. Acta, 43, 3045-3058(1998).
30.Kuo-Chuan Liu and Marc A. Anderson, “Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors,”J. Electrochem. Soc., 143, 124-130(1996).
31.S. Sarangapani, B. V. Tilak,and C.-P. Chen, ibid., 143, 3791 (1996)
32.J. P. Zheng and T. R. Jow, ibid., 142, L6 (1995)
33.Y. Takasu, T. Nakamura, H. Ohkawauchi, and Y. Murakami, ibid., 144, 2601(1997).
34.K.-C. Liu and M. A.Anderson, ibid., 143, 124 (1996).
35.S. Ardizzone, G. Fregonara and S. Trasatti, “Inner and Outer Active Surface of RuO2 Electrodes”, Electrochim. Acta, 35, 263-267 (1989).
36.黃耀煌, “循環伏安法置備之含水釕氧化物於電化學電容器之應用”, 國立中正大學化工研究所碩士論文, 1999.
37.張光揮, “循環伏安置備含水釕銥氧化物於電化學電容器的應用”,國立中正大學化工研究所碩士論文, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top