(3.238.173.209) 您好!臺灣時間:2021/05/16 05:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭士維
研究生(外文):Shi-Wei Kuo
論文名稱:應用於無線通訊中雙頻帶振盪器之分析與設計
論文名稱(外文):Analysis and Design of Dual-Band Oscillators for Wireless Communication
指導教授:張盛富
指導教授(外文):Sheng-Fuh Chang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:83
中文關鍵詞:倍頻式雙頻帶振盪器分佈式雙頻帶振盪器
外文關鍵詞:frequency-doubler dual-band oscillatordistributed dual-band oscillator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分析與設計雙頻帶振盪器。主要採取兩種架構,分別為倍頻式雙頻帶振盪器 (frequency-doubler dual-band oscillator) 以及分佈式雙頻帶振盪器 (distributed dual-band oscillator)。倍頻式雙頻帶振盪器由 2.85 GHz低相雜訊振盪器、寬頻單刀雙擲開關、和倍頻器所構成。其以單刀雙擲開關切換振盪頻和倍頻器,以實現 2.85 GHz與 5.7 GHz的雙頻帶振盪器。分佈式雙頻帶振盪器由多級分佈式放大器加適當迴授所形成,文中推導多頻段振盪條件,以獲得振盪頻率與電晶體轉導間的關係,並據以設計 2.3 GHz與 4.3 GHz的雙頻帶振盪器。最後經由實作量測以驗證理論推導的正確性。

This thesis analyzes and designs two architectures of dual-band oscillators, which are the frequency-doubler structure and the distributed-oscillator structure, respectively. The frequency-doubler dual-band oscillator consists of a 2.85 GHz low phase noise oscillator, a broadband SPDT switch and a frequency doubler. By using the SPDT switch to select or bypass the frequency doubler, a 2.85 GHz and 5.7 GHz signal can be generated. On the other hand, a distributed oscillator can be accomplished by using the reverse gain mechanism of a multistage distributed amplifier through the appropriate feedback. The multi-band oscillator condition is derived to give the relationship between the oscillation frequency and the trans-conductances of FETs. Based on this theory, a 2.3 GHz and 4.3 GHz dual-band oscillator is implemented. For both dual-band oscillator, the measurement results agree very well with the theoretical prediction.

第一章 緒論1
1-1 研究動機與背景1
1-2 論文內容概要2
第二章 低相雜訊振盪器之理論與設計3
2-1 簡介3
2-2 平行耦合線共振器之分析4
2-3 振盪器之基本理論9
2-4 振盪器之實作與量測12
第三章 倍頻式雙頻帶振盪器之分析與設計18
3-1 簡介18
3-2 倍頻訊號之產生20
3-2.1場效電晶體之非線性效應20
3-2.2 雙載子接面電晶體之非線性效應26
3-3 寬頻倍頻器之分析30
3-4 主動式平衡器之設計與量測34
3-5 主動式功率結合器之設計與量測42
3-6 寬頻倍頻器之之設計與量測50
3-7 2.4 / 5.8 GHz雙頻帶振盪器之設計與量測54
第四章 分佈式雙頻帶振盪器之分析與設計60
4-1 簡介60
4-2 像參數理論61
4-3 分佈式振盪器之基本理論65
4-4 分佈式振盪器之電路設計69
4-5 倍頻式雙頻帶振盪器與分佈式雙頻帶振盪器之比較76
第五章 結論77
參考文獻

[1] D. B. Leeson, “ A simple model of feedback oscillator noise spectrum,” Proceedings of IEEE, vol.42, pp.329-330, Feb. 1966.
[2] R. D. Martinez, D. E. Oates, and R. C. Compton, “ Measurement and Model for Correlating Phase and Baseband 1/f Noise in an FET,” IEEE Trans. MTT, vol.42, no. 11, pp. 2051-2055, Nov. 1994.
[3] M. J. Underhill, “Reduction of Phase Noise in Single Transistor Oscillators,” IEE Conf. Publ., EFTF, pp. 476-490, 1996.
[4] B. J. Skinner, F. M. Ingels, and J. P. Donohoe, “ A Computer Model of Oscillator Phase Noise,” IEEE Proceedings, pp. 202-204, Feb. 1992.
[5] E. N. Ivanov, M. E. Tobar, and R. A. Woode, “ Ultra-Low-Noise Microwave Oscillator with Advanced Phase Noise Suppression System,” Microwave and Guided Wave Letters, vol. 6, no. 9, pp. 312-314, Sep. 1996.
[6] A. Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS Oscillators with Switched Tuning,” in Custom IC Conf., pp. 555-558, 1998.
[7] Takuo Kashiwa, Takao Ishida, Takayuki Katoh, Hitoshi Kurusu, Hiroyuki Hoshi, and Yasuo Mitsui, “V-Band High-Power Low Phase-Noise Monolithic Oscillators and Investigation of Low Phase-Noise Performance at High Drain Bias,” IEEE Trans. MTT, vol.46, no. 10, pp. 1599-1565, Oct. 1998.
[8] J. M. Yang, D.C. Yang, P.G. Cheng, and J. M. Dickson, “Automated Phase Noise Measurement of Ku-Band MMIC VCO On-wafer,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1763-1766, May 1999.
[9] M. S. Heins, T. Juneja, J. A. Fendrich, D. Scott, Q. Yang, M. Hattendorf, G. E. Stillman, and M. Feng, “W-band InGaP/GaAs HBT MMIC Frequency Sources,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 239-242, May 1999.
[10] D. K. Hien, M. Stubbs, T. Laneve,C. Glaser, and D. Drolet, “Ka-band MMIC Voltage-Contrlled Oscillator,” APMC, 1997, pp. 545-548.
[11] B. D. Cuthbertson, M. E. Tobar, E. N. Ivanov, and D. G. Blair, “Sensitivity and Opimization of a High-Q Sapphire Dielectric Motion-Sensing Transducer,” IEEE Trans. Ultrasonics, and Frequency Control, vol. 45, no. 5, pp. 1303-1313, Sep. 1998.
[12] M. Mizan, R. C. McGowan, T. Lukaszek, and A. Ballato, “Temperature Stable, Low-Phase Noise 2 GHz Dielectric Resonator Oscillator,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1183-1186, Apr. 1991.
[13] A. P. S. Khanna, and M. Schmidt, “Low Phase Noise Superconducting Oscillator,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1239-1242, Apr. 1991.
[14] A. P. S. Khanna, and J. Hauptman, “18-40 GHz 13dBm Low Noise GaAs FET YIG Tuned Oscillator,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 209-212, Apr. 1991.
[15] Z. Skvor, S. R. Saunders, and C. S. Aitchison, “Novel Decade Electronically Tunable Microwave Oscillator based on the distributed amplifier,” Electronics Letters, vol.28, no. 17, pp.1647-1648, Aug.1992.
[16] L. Divina and Z. Skvor, “The distributed oscillator at 4GHz,” IEEE Trans. MTT, vol.46, no. 12, pp. 2240-2243, Dec. 1998.
[17] B. Kleveland, C. H. Diaz, D. Dieter, L. Madden, T. H. Lee, and S. S. Wong, “Monolithic CMOS Distributed Amplifier and Oscillator ,” IEEE Int. Solid-State Circ. Conf., Paper MP 4.3, Feb.1999.
[18] Hui Wu and Ali Hajimiri, “A 10GHz CMOS Distributed Voltage Controlled Oscillator,” submitted to IEEE Custom Integrated Circuit Symposium 2000.
[19] Ali Hajimiri and Hui Wu, “Analysis and Design of Silicon Bipolar Distributed Oscillators,” submitted to IEEE VLSI Circuits Digest of Technical Symposium 2000.
[20] K. B. Niclas, W. T. Wilser, T. R. Kritzer, and R. R. Pereira, “On Theory and Performance of Solid-State Microwave Distributed Amplifier,” IEEE Trans. MTT, vol.31, no. 6, pp. 447-456, Jun. 1983.
[21] J. B. Beyer, S. N. Prasad, R. C. Becker, J. E. Nordman, and G. K. Hohenwarter, “MESFET Distributed Amplifier Design Guidelines,” IEEE Trans. MTT, vol.32, no. 3, pp. 268-275, Mar. 1984.
[22] T. T. Y. Wong, Fundamental of Distributed Amplification. London, U. k., Artech House, 1993.
[23] Hiroyuki Yabuki, Morikazu Sagawa, and Mitsuo Makimoto, “Voltage Controlled Push-Push Oscillators Using Miniaturized Hairppin Resonators,” IEEE MTT-S Dig., pp. 1175-1178, Apr. 1991.
[24] F. X. Sinnesbichler, H. Geltinger, and G.R. Olbrich, “A 50GHz SiGe HBT Push-Push Oscillator,” IEEE MTT-S Dig., pp. 9-12, May 1999.
[25] F. X. Sinnesbichler, H. Geltinger, and G.R. Olbrich, “A 38-GHz Push-Push Oscillator Based on 25-GHz fT BJT’s,” IEEE Microwave and Guided Wave Letters, vol. 9, no. 4, pp. 151-153, Apr. 1999.
[26] K. W. Kobayashi, A.K. Oki, L. T. Tran, J. C. Cowles, A. G. Aitken, Frank Yamada, T. R. Block, and D. C. Streit, “A 108-GHz InP-HBT Monolithic Push-Push VCO with Low Phase Noise and Wide Tuning Bandwidth,” IEEE Journal of Solid-State Circuits, vol. 34, no. 9, pp. 1225-1232, Sep. 1999.
[27] C. Muschallik, “Influence of RF oscillator on an OFDM signal.”, IEEE Transactions on Consumer Electronics, vol. 41, no.3, pp.592-603, Aug., 1995.
[28] David M. Pozar, Microwave Engineering, Second Edition, John Wiley & Sons, Inc., 1998.
[29] Zeland Software, Inc., IE3D User’s Manual, Jan. 1997.
[30] U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, John Wiley & Sons, Inc., 1990.
[31] Guillermo Gonzalez, Microwave Transistor Amplifier, Analysis and Design, Second Edit, Prentice Hall, 1997.
[32] A. M. Patio, S. D. Bingham, R. H. Halladay, and C. A. Sapashe, “A distributed broadband monolithic frequency multiplier”, IEEE MTT-S Int. Microwave Symp. Dig., pp.503-504, June 1988.
[33] I. Angelov, H. Zirath and N. Rorsman, “A New Empirical Nonlinear Model for HEMT and MESFET Devices,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 12, pp. 2258-2266, 1992.
[34] K. Lehovec, “C-V Analysis of a Partially Depleted Semiconducting Channel,” Appl. Phys. Lett. 26, 82-84, Feb. 1975.
[35] R. A. Pucel, H. A. Haus, and H. Statz, “Signal and noise properties of GaAs microwave field effect transistors”, Advances in Electronics and Elctron Physics, L. Marton, Ed., vol. 38. New York: Academic, pp. 195-265, 1975.
[36] T. Tsukii, M. J. Schindler, “2-20 GHz MMIC Frequency Doubler”, The 3rd Asia-Pacific Microwave Conference Proceedings, Tokyo, Paper 37-1, pp.857-860, 1990.
[37] Takahiro Hiraoka, Tsuneo Tokumitsu, and Masami Akaike “A miniaturized, broadband mmic frequency doublere” , IEEE MTT-S Int. Microwave Symp. Dig., pp.819-822, 1990.
[38] M. Jouanneau, H. Brouzes, S. Bionaz, and D. Levy “A 1 to 18GHz out of phase combiner” , IEEE Microwave and Millimeter-wave monolithic circuit Symp., pp.83-86, May 1990.
[39] A. S. Yanev, B. N. Todorov, and V. Z. Ranev, “A Broad-Band Balanced HEMT Frequency Doubler in Uniplanar Technology,” IEEE Trans. MTT, vol. 46, no. 12, pp. 2032-2035, Dec. 1998.
[40] F. V. Raay, and G. Kompa, “Design and Stability Test of A 2-40GHz Frequency Doubler with Active Balun,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1573-1576, 2000.
[41] Stephen A. Mass., Microwave Mixers, Artech House, 1993.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文