跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/06 04:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:連振凱
研究生(外文):Jenn-Kaie Lain
論文名稱:應用於無線寬頻系統中具集中式資源分配法則之多重進接技術之研究
論文名稱(外文):Research on Multiple Access Control with Centralized Resource Allocation Strategies for Wireless Broadband Communicatons
指導教授:溫志宏溫志宏引用關係
指導教授(外文):Jyh-Horng Wen
學位類別:博士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:187
中文關鍵詞:多重進接控制分時多重進接分碼多重進接封包預約多重進接
外文關鍵詞:Multiple Access ControlTime Division Multiple AccessCode Division Multiple AccessPacket Reservation Multiple Access
相關次數:
  • 被引用被引用:0
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此論文探討應用於整合多媒體無線寬頻通訊系統中媒體擷取控制層之多重擷取技術研究。我們特別將重點放在運用多重擷取技術來達成滿足不同服務需要不同服務品質的要求,其中主要的觀念有兩點 — 即需求式分配(Demand Assignment)觀念與集中式分配(Centralized Assignment)觀念。我們並且成功地利用在時間分割與頻率分割的二維空間上,設計出時間頻率傳訊(Time-Frequency Signaling)技術來實現需求式分配與集中式分配的觀念。藉由需求式分配與集中式分配的觀念與時間頻率傳訊技術,基地台擁有其所管轄區域內所有行動台的頻寬需求,因此,基地台可以根據不同的頻寬分配法則或排程演算法(Scheduling Algorithm)來分配系統頻寬給需要的行動台。此種多重擷取技術的設計觀念與文獻中所提的以封包預約多重擷取(PRMA)為主的方法並不相同。其主要的差異在於本論文中所提的多重擷取技術中,基地台扮演一資源分配的主控者與分配者,而在PRMA系統中則不是如此。藉著完成上述的研究工作與其所顯示出的結果,我們確認本論文所提出的需求式分配、集中式分配、與排程演算法,在搭配時間頻率傳訊技術確實可以成為於未來的寬頻通訊系統中多重擷取技術的重要設計方針。

In the dissertation, we have addressed the MAC scheme at the medium access control layer of the integrated multimedia service wireless networks. In particular, the focus of the dissertation is concentrated on studying MAC schemes constrained to meet QoS requirements by taking advantage of the two concepts — one based on the demand assignment concept and the other based on the centralized resource allocation concept. These two important concepts can be realized and implemented with the so-called time-frequency signaling scheme. In the des-igned systems, the BS has complete knowledge of the bandwidth demand of all the MTs in the system. Thus, the multiple access problem is demand assigned and centralized, in contrast to the systems based on PRMA and its variants where the BS is less active in the allocation of the bandwidth. The scheduling algorithm is also suggested to an efficient tool to solve the traffic congestion when the channel may not be available to certain sources even though they may have information to transmit. By accomplishing these works, we expect these general concepts, including the centralized resource allocation, the demand assignment allocation, and the scheduling algorithm, to reveal the guidelines for the MAC protocol design in the future broadband wireless networks.

中文摘要vi
Abstractvii
Acknowledgementsviii
Dedicationix
List of Tablesx
Lists of Figuresxi
Lists of Abbreviationsxv
1. Introduction1
1.1 Architecture of Wireless Broadband Communication Networks3
1.2 Preliminary Work4
1.2.1 Trends in Forthcoming Wireless Communications4
1.2.2 Packet Reservation Multiple Access6
1.2.3 Scheduling Algorithms7
1.2.4 Centralized Multiple Access Control8
1.3 Origination of the Contents8
2 Multiple Access Communications — A Comprehensive Study11
2.1 Classification of MAC Protocols13
2.2 Fixed Assignment Techniques14
2.3 Random Access Techniques16
2.3.1 ALOHA and its Variants16
2.3.2 Carrier Sense Multiple Access18
2.4 Demand Assignment Techniques20
2.4.1 Polling Systems20
2.4.2 Reservation ALOHA Systems21
2.5 Hybrid-Typed Schemes21
2.5.1 Packet Reservation Multiple Access22
2.5.2 PRMA with Dynamic Assignment25
2.5.3 Packet Reservation Multiple Access with Spread Spectrum31
2.5.4 Priority-Oriented Demand Assignment33
2.5.5 Non-Collision Packet Reservation Multiple Access34
3 Non-Collision Packet Reservation Multiple Access with Dynamic 39 Assignment and Scheduling Algorithm
3.1 NC-PRMA with Dynamic Assignment39
3.1.1 A Protocol for Multimedia Communications39
3.1.2 NC-PRMA/DA with FDD Scheme40
3.1.3 NC-PRMA/DA with STDD Scheme43
3.2 Resource Allocation Algorithm45
3.2.1 Available Time Slot Allocation Algorithm45
3.2.2 Reservation Time Slot Allocation Algorithm46
3.3 SNC-PRMA/DA with FDD or STDD Scheme48
3.4 Assumptions and Measures for Performance Evaluations50
3.4.1 Design Issues of Time-Frequency Signaling Scheme52
3.4.2 Traffic Source Modeling52
3.5 Simulation Results54
3.6 Short Comments57
4 Hybrid-Typed Multiple Access Control Protocol68
4.1 Time-Slotted DS-CDMA Modeling69
4.2 A Previous Joint CDMA/PRMA Protocol72
4.2.1 Basic Features of Joint CDMA/PRMA72
4.2.2 Inherent MAI Variation in Joint CDMA/PRMA72
4.3 The Proposed Joint CDMA/NC-PRMA Protocol73
4.3.1 A Protocol with Centralized Operation73
4.3.2 Frame Structure74
4.3.3 Time-Frequency Signaling Scheme75
4.3.4 Channel Access77
4.3.5 Packet scheduling Policy77
4.4 Packet scheduling Policy77
4.4.1 Load-Balancing (LB) Packet Scheduling Scheme77
4.4.2 Power-Grouping (PG) Packet Scheduling Scheme77
4.5 Performance Evaluation79
4.5.1 Traffic Models79
4.5.2 Design Issues for System Parameters 80
4.5.3 Imperfect Power Control Model84
4.5.4 Performance Measures85
4.6 Simulation Results and Discussions86
4.6.1 Voice-Only Traffic in Single-Cell System87
4.6.2 Mixed Voice/Video Traffic in Single-Cell System88
4.6.3 Voice-Only Traffic in Multi-Cell System90
4.6.4 Voice-Only Traffic in the Presence of Power Control Imperfections91
4.6.5 System Performance in the Presence of Signature Missing92
4.7 Performance Analysis of Joint CDMA/NC-PRMA Protocol 94
4.8 Short Comments102
5 Performance Evaluation of Joint CDMA/NC-PRMA Systems 120 with RAKE Reception and Adaptive Receiver
5.1 System Description120
5.1.1 Transmitter Model120
5.1.2 Channel Model122
5.1.3 Receiver Model123
5.1.4 Maximum Ratio Combining (MRC)126
5.1.5 Equal-Gain Combining (EGC)129
5.2 Performance Evaluation with the Perfect Channel Fading Estimation131
5.3 Performance Evaluation with the Imperfect Channel Fading Estimation133
6 Multiple Access Control for Multiple-Channel Code Division 147 Multiple Access Systems
6.1 Overview of Multi-Channel CDMA Systems147
6.2 Multiple-Channel DS-CDMA System Modeling147
6.3 Multiple Access Control Strategies148
6.3.1 Fixed Channel Assigned (FCA) MAC148
6.3.2 Random Selection Channel Assigned (RSCA) MAC149
6.3.3 Optimized A-Posteriori Expectation Channel Assigned 149 (OAPECA) MAC
6.3.4 Load Balancing Channel Assigned (LBCA) MAC151
6.3.5 Adaptive Permission Channel Assigned (APCA) MAC152
6.4 Traffic Model, System Parameters, and Performance Measures154
6.5 Performance Evaluations under the Perfect Power Control154
6.5.1 FCA, RSCA, OAPECA, and LBCA MAC Schemes 155
6.5.2 OAPECA and APCA MAC Schemes156
6.5.3 Impact of Packet Switching and Indicator Error on LBCA MAC157
6.6 Performance of Power Grouping Channel Assigned MAC 158
6.6.1 Performance degradation in the presence of the imperfect 158 power control
6.6.2 Power Grouping Channel Assigned MAC159
6.7 Integrated Voice/Video Traffic System160
7 Conclusions174
Appendix A. Construction of Non-primitive BCH codes177
References181
Vita187

[1] S. V. Krisnamurthy, A. S. Acampora, and M. Zorzi, “Polling-based media access proto-cols for use with smart adaptive array antennas,” IEEE/ACM Trans. Networking, vol. 9, no. 2, pp. 148-161, Apr. 2001.
[2] R. Becher, M. Dillinger, M. Haardt, and W. Mohr, “Broad-Band wireless access and fu-ture communication networks,” Proceedings of the IEEE, vol. 89, no. 1, Jan. 2001.
[3] J. H. Wen, J. K. Lain, and Y. W. Lai, “Performance evaluation of a joint CDMA/NC-PRMA protocol for wireless multimedia communications,” IEEE J. Select. Areas Com-mun., vol. 19, no. 1, pp. 95-106, Jan. 2001.
[4] S. Ohmori, Y. Yamao, and N. Nakajima, “The future generations of mobile communica-tions based on broadband access technologies,” IEEE Commun. Mag., pp. 134-142, Dec. 2000.
[5] I. F. Akyildiz, D. A. Levine, and I. Joe, “A slotted CDMA protocol with BER scheduling for wireless multimedia networks,” IEEE/ACM Trans. Networking, vol. 7, no. 2, pp. 146-158, Apr. 1999.
[6] G. J. Dong and S. J. Wha, “CDMA/TDD system for wireless multimedia services with traffic unbalance between uplink and downlink,” IEEE J. Select. Areas Commun., vol. 17, no. 5, pp. 939-946, May 1999.
[7] D. J. Goodman, R. A. Valenzeula, K. T. Gayliard, and B. Ramamurthi, “Packet reserva-tion multiple access for local wireless communications,” IEEE Trans. Commun., vol. 37, pp. 885-890, 1989.
[8] G. Bianchi, F. Borgonovo, L. Fratta, L. Musumeci, and M. Aorzi, “C-PRMA: A central-ized packet reservation multiple access for local wireless communications,” IEEE Trans. Veh. Tech., vol. 46, no. 2, pp. 422-436, May 1997.
[9] S. Tasaka, “Stability and performance analysis of the R-ALOHA packet broadcast sys-tem,” IEEE Trans. Comput., vol. 32, pp. 717-726, Aug. 1983.
[10] O. Kubbar and H. T. Mouftah, “Multiple access control protocol for wireless ATM: prob-lems definition and design objectives,” IEEE Commun. Mag., pp. 93-99, Nov. 1997.
[11] N. Abramson, “The ALOHA system — another alternative for computer communications,” In Proc. Fall Joint Comput., Conf., AFIPS Conf., pp. 37, 1970.
[12] J. I. Capetanakis, “The multiple access broadcast channel: Protocol and capacity consid-erations,” IEEE Trans. Inform. Theory, vol. 25, pp. 505-515, 1979.
[13] J. C. Huang and T. Berger, “Delay analysis of the modified 0.487 contention resolution algorithm,” IEEE Trans. Inform. Theory, vol. 31, pp. 264-273, 1985.
[14] J. Mosley and P. A. Humblet, “A class of efficient contention resolution algorithms for multiple access channels,” IEEE Trans. Commun., vol. 33, pp. 145-151, 1985.
[15] R. W. Muise, T. J. Schonfeld, and G. H. Zimmerman, III, “Experiments in wideband packet technology,” in Proc., 1986 Zurich Sem., pp. 135-139, Mar 1986.
[16] J. G. Kim and I. Widjaja, “PRMA/DA: A new media access control protocol for wireless ATM,” IEEE ICC’96, Dallas, TX, USA, pp. 240-244, 23-27 June 1996.
[17] Y. Li, and S. Andresen, “An extended packet reservation multiple access protocol for wireless multimedia communications,” PIMRC’94/WCN, pp. 1254-1259, 1994.
[18] A. E. Brand and A. H. Aghvami, “Performance of a joint CDMA/PRMA protocol for mixed voice/data transmission for third generation mobile communication,” IEEE J. Se-lect. Areas Commun., vol. 14, no. 9, pp. 1698-1707, Dec. 1996.
[19] I. M. Jacobs, R. Binder, and E. V. Hoversten, “General purpose packet satellite networks,” Proc. IEEE, vol. 66, Nov. 1978.
[20] J. H. Wen and J. W. Wang, “Performance analysis of non-collision packet reservation multiple access protocol for wireless communications,” International Journal of Parallel and Distributed System and Networks, vol. 2, no. 1, pp. 10-17, 1998.
[21] D. J. Goodman, P. S. Henry, and K. Prabhu, “Frequency-hopped multilevel FSK for mo-bile radio,” Bell Syst. Tech. J., vol. 59, pp. 1257-1275, 1980.
[22] U. Timor, “Multitone frequency-hopped MFSK for mobile radio,” Bell Syst. Tech. J., vol. 61, pp. 3007-3017, 1982.
[23] D. J. Goodman and S. X. Wei, “Effeciciency of packet reservation multiple access,” IEEE Trans. Veh. Technol., vol. 40, no. 1, pp. 1351-1357, Feb. 1991.
[24] B. E. Brand and A. H. Aghvami, “Multidimensional PRMA with prioritized Bayesian broadcast-a MAC strategy for multiservice traffic over UMTS,” IEEE Trans. Veh. Tech-nol., vol. 47, no. 4, Nov. 1998.
[25] W. C. Wang, C-E. W. Sundberg and N. Seshadri, “Shared time division duplexing: an ap-proach to low-delay high-quality wireless digital speech communications,” IEEE Trans. Veh. Tech., vol. 43, no. 4, pp. 934-945, Nov. 1994.
[26] Y. S. Chen, Performance Study on NC-PRMA Protocol with Multi-channel Structure and Scheduling Algorithm, Master Thesis, Institute of Electrical Engineering, National Chung Cheng University, Chiayi, Taiwan, R.O.C., July 1998.
[27] D. Heyman, T. V. Lakshman, A. Tabatabai and H. Heeke, “Modeling teleconference traf-fic from video video coders,” IEEE SUPERCOMM/ICC’94, New Orleans, USA, pp. 1744-1748, May 1994.
[28] M. B. Pursley, “Performance evaluation for phased-coded spread spectrum multiple-access communication─Part I: System analysis,” IEEE Trans. Commun., vol. COM-25, no. 8, pp. 795-799, Aug. 1977.
[29] J. M. Romero-Jerez, M. Ruiz-Garcia, and A. Diaz-Estrella, “Impact of multipath fading on throughput in cellular packet CDMA system,” IEE Electronics Letters, vol. 36, no. 3, pp. 256-258, Feb. 2000.
[30] I. M. Kim and H. M. Kim, “Scheme for enhancing performance of smart antennas in vari-able processing gain packet CDMA systems,” IEE Electronics Letters, vol. 35, no. 7, pp. 518-520, Apr. 1999.
[31] F. K. Chin and H. Leib, “Power imbalance effects on packet CDMA,” IEEE J. Select. Ar-eas in Commun., vol. 14, no. 9, pp. 1830-1840, Dec. 1996.
[32] N. D. Wilson, R. Ganesh, K. Joseph, and D. Raychaudhuri, “Packet CDMA versus dy-namic TDMA for multiple access in an integrated voice/data PCN,” IEEE J. Select. Areas in Commun., vol. 11, no. 6, pp. 870-884, Aug. 1993.
[33] J. Wu and R. Kohno, “Performance evaluation of wireless multimedia CDMA networks using adaptive transmission control,” IEEE J. Select. Areas Commum., vol. 14, no. 9, pp. 1688-1697, Dec. 1996.
[34] J. Wu and R. Kohno, “A wireless multimedia CDMA system based on transmission pow-er control,” IEEE J. Select. Areas Commum., vol. 14, no. 4, pp. 683-691, May 1996.
[35] Speech and voiceband data performance requirements for Future Public Land Mobile Telecommunication Systems (FPLMTS), Recommendation ITU-R M.1079, 1994.
[36] T. S. Rappaport, Wireless communications principles & practice. NJ, Prentice-Hall, 1996.
[37] S. Lin, Error control coding: fundamentals and applications. Englewood Cliffs, NJ, Prentice-Hall, 1983.
[38] A. M. Viterbi and A. J. Viterbi, “Erlang capacity of a power controlled CDMA system,” IEEE J. Select. Areas Commun., vol. 11, no. 6, pp. 892-900, Aug. 1993.
[39] M. J. Jansen and R. Prasad, “Capacity, throughput, and delay analysis of a cellular DS CDMA system with imperfect power control and imperfect sectorization,” IEEE Trans. Veh. Technol., vol. 44, no. 1, pp. 67-75, Feb. 1995.
[40] F. D. Priscoli and F. Sestini, “Effects of imperfect power control and user mobility on a CDMA cellular netowrk,” IEEE J. Select. Areas Commun., vol. 14, no. 9, pp. 1809-1817, Dec. 1996.
[41] R. Ganesh, K. Joseph, N. D. Wilson, and D. Raychaudhuri, “Performance of cellular packet CDMA in an integrated voice/data network,” Int. J. Wireless Inform. Networks, vol. 1, no. 3, pp. 199-221, 1994.
[42] R. P. F. Hoefel and C. de Almeida, “Capacity loss of CDMA/PRMA systems with imper-fect power loop,” IEE Electronics Letters, vol. 34, no. 10, pp. 1020-1022, May 1998.
[43] M. Schwartz, Telecommunication networks, protocol, modeling and analysis. Addison-Wesley Publishing Company, 1987.
[44] R. Price and P. E. Green, “A communication technique for multipath channels,” Proc. IEEE, vol. 46, pp. 555-570, March 1958.
[45] M. Kavehrad and P. J. Mclane, “Performance of low-complexity channel coding and di-versity for spread-spectrum in indoor, wireless communication,” AT&T Technical Journal, vol. 64, pp. 1927-1965, Oct. 1985.
[46] T. Eng and B. M. Milstein, “Coherent DS-CDMA performance in Nakagami multipath fading,” IEEE Trans. on Commun., vol. 43, pp. 1134-1143, Feb./Mar./Apr. 1995.
[47] G. E. Bottomley, T. Ottosson, and Y.-P. E. Wang, “A generalized RAKE receiver for in-terference suppression,” IEEE J. Select. Areas Commun., vol. 18, no. 8, pp. 1536-1545, Aug. 2000.
[48] K. J. Kim, S. Y. Kwon, E. K. Hong, and K. C. Whang, “Effect of tap spacing on the per-formance of direct-sequence spread-spectrum RAKE receiver,” IEEE Trans. Commun., vol. 48, no. 6, pp. 1029-1036, June 2000.
[49] M. Nakagami, “The m-distribution — A general formula of intensity distribution of rapid fading,” in Statistical Methods in Radio Wave Propagation, pp. 3-36, Pergamon Press, Oxford, England, 1960.
[50] A. H. Wojnar, “Unknown bounds on performance in Nakagami channels,” IEEE Trans. Commun., vol. 34, no. 1, pp. 22-24, Jan. 1986.
[51] J. B. Seaborn, Hypergeometric functions and their applications. Springer-Verlag, 1991.
[52] J. G. Proakis, Digital communications. McGraw-Hill, third ed., 1995.
[53] M. J. Gans, “The effect of Gaussian error in maximal ratio combiners,” IEEE Trans. on Commun. Technol., vol. 19, pp. 492-500, Aug. 1971.
[54] D. N. Knisely, Q. Li, and N. S. Ramesh, “cdma2000: A third-generation radio transmis-sion technology,” Bell Labs Tech. J., pp. 63-78, July-Sept. 1998.
[55] Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular Systems, Telecommun. Ind. Assoc. Standard TIA/EIA/ IS-95-B, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top