跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 09:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳世晏
研究生(外文):Chen Shyh-Yann
論文名稱:圖形的譜
論文名稱(外文):The spectra of graphs
指導教授:王心如
學位類別:碩士
校院名稱:國立中正大學
系所名稱:數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:50
中文關鍵詞:方體正規圖形
外文關鍵詞:spectrumgraphtreen-cuberegular graph
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
這篇文章主要是探討一些特殊圖形的譜(spectrum),包括了討論循環圖形(circulant graph)的圖譜、在正規圖形(regular graph)上做一些點線的轉換或運作時其圖譜變化的探討、n-方體(n-cube)圖譜的確定及樹的圖譜的研究。

This thesis is mainly concerned with the spectra of some special graphs. It consists of the discussion of the spectra of circulant graphs, the behaviors of the spectra of graphs derived from some operations on regular graphs, the determination of the spectra of the n-cubes and the investigation of the spectra of trees.

Chapter 1Introduction
Chapter 2Basic definitions and results
Chapter 3Circulant matrices and their applications
3.1Circulant matrices
3.2The spectra of some circulant graphs
Chapter 4Some operations on graphs and the resulting spectra
4.1Line graphs
4.2The complements of graphs
4.3Subdivision graphs
4.4Total graphs
4.5n-cubes
Chapter 5The spectra of trees
5.1Paths and star graphs
5.2The spectra of trees

[1]N. Biggs, Algebraic graph theory, 2nd ed., Cambridge University Press, Cambridge, 1993.
[2]D. B. West, Introduction to graph theory, Prentice-Hall, Upper Saddle River, NJ, 1996.
[3]F. Harary, Graph theory, Addison-Wesley, Reading Massachusetts, 1969.
[4]D. M. Cvetković, Some possible directions in further investigations of graph spectra, In: Algebraic methods in graph theory, Vol. I; Szeged, 1978, Colloq. Math. Soc. Jonos Bolyai (1981), North-Holland, Ams- terdam, 1981, pp.47-67.
[5]D. M. Cvetković, M. Doob, I. Gutman, A. Torgašev, Recent results in the theory of graph spectra, North-Holland, Amsterdam, 1988.
[6]D. M. Cvetković, M. Petrić, A table of connected graphs on six ver- tices, Discrete Math., 50(1984), pp.37-49.
[7]D. M. Cvetković, M. Doob and H. Sachs, Spectra of graphs, 2nd ed., Jahann Ambrosius, Heidelberg, 1979.
[8]D. M. Cvetković, Spectra of graphs formed by some unary operations. Publ. Inst. Math. (Beograd) 19 (33) (1975), pp.37-41.
[9]D. M. Cvetković, Spectrum of the total graph of a graph, Publ. Inst. Math.(Beograd)16 (30) (1973), pp.49-52.
[10]F. Buckley and F. Harary, Distance in graphs, Addison-Wesley Pu- lishing Company, Redwood City, CA, 1989.
[11]B. Andrasfai, Graph theory: flows, matrices, IOP Publishing Ltd, Adam Hilger, 1991.
[12]F. R. Gantmacher, The theory of matrices, Vol. I, Chelsea Publi- shing Company, New York, 1990, pp.45-46.
[13]O. Aberth, On the sum of graphs. Rev. Franc. Rech. Operat. 8 (1964), pp.353-358.
[14]J. M. Ortega, Matrix theory: a second course, Plenum Press, New York, 1987.pp.240-241.
[15]J. Xu and R. Qu, The spectra of hypercubes, Journal of Engineering Mathematics, 16(1999), no.4, pp.1-5.
[16]R. Gould, Graph theory, Benjamin/Cummings Publishing Company, Menlo Park, 1988.
[17]Herbert S. Wilf, Generatingfunctionology, Academic press, Inc. Boston, 1990.
[18]Ya-Fen Wang, The R-spectra of some special graphs, Tamkang Uni- versity , Taipei, 1993.
[19]T.J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2nd ed., A Wiley-Interscience public- cation, 1990, pp.1-7.
[20]P. Rowlinson, A deletion-contraction algorith for the characteristic polynomial of a multigraph, Proc. Roy. Soc. Edin. 105A(1987), pp. 153 —166.
[21]A. Chang, Some properties of the spectra of graphs, Appl. Math. J. Chinese Univ. Series B.14(1999),no.1, pp.103-107.
[22]H. Urakawa, The spectrum of an infinite graph, Canad. J. Math. 52(2000), no.5, pp.1057-1084.
[23]Y. Teranishi and F. Yasuno, The second largest eigenvlaues of regu- lar bipartite graphs, Kyushu J. Math. 54(2000), no.1, pp.39-54.
[24]W.C. Li and P. Sole, Spectra of regular graphs and hypergraphs and orthogonal polynomials, European J. Combin.17(1996),no.5, pp.461- 477.
[25]B. Curtin and K. Nomura, Some formulas for spin models on distance-regular graphs, Journal of combinatorial theory, Series B, Vol.75, No.2, Mar 1999, pp.206-236.
[26]S. Tomoyuki, The spectrum of infinite regular line graphs, Trans. Amer. Math. Soc.352 (2000), pp.115-132.
[27]L. F. Zhao, Some spectral properties of strong regular graphs, Math. Appl. 13(2000), no.4, pp.82-84.
[28]C.D. Godsil, Spectra of trees, Convexity and graph theory, North- Holland, Amsterdam, 1984.
[29]M. Hofmeister, On the two largest eigenvalues of trees, Linear Algebra Appl. 260(1997), pp.43-59.
[30]On spectra of trees and related two-graphs, Fourth Czechoslova- kian Symposium on Combinatorics, Graphs and Complexity (Prac- hatice, 1990), pp337-340.
[31]Yves Colin de Verdiėre, Multiplicities of eigenvalues and tree-width of graphs, Journal of combinatorial theory, Series B, Vol.74, No.2, Nov 1998, pp.121-146.
[32]J.M. Cohen and F. Colonna, Spectral analysis on homogeneous trees, Advances in applied mathematics, Vol.20, No.2.Feb 1998, pp.253-274.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top