|
[1]N. Biggs, Algebraic graph theory, 2nd ed., Cambridge University Press, Cambridge, 1993. [2]D. B. West, Introduction to graph theory, Prentice-Hall, Upper Saddle River, NJ, 1996. [3]F. Harary, Graph theory, Addison-Wesley, Reading Massachusetts, 1969. [4]D. M. Cvetković, Some possible directions in further investigations of graph spectra, In: Algebraic methods in graph theory, Vol. I; Szeged, 1978, Colloq. Math. Soc. Jonos Bolyai (1981), North-Holland, Ams- terdam, 1981, pp.47-67. [5]D. M. Cvetković, M. Doob, I. Gutman, A. Torgašev, Recent results in the theory of graph spectra, North-Holland, Amsterdam, 1988. [6]D. M. Cvetković, M. Petrić, A table of connected graphs on six ver- tices, Discrete Math., 50(1984), pp.37-49. [7]D. M. Cvetković, M. Doob and H. Sachs, Spectra of graphs, 2nd ed., Jahann Ambrosius, Heidelberg, 1979. [8]D. M. Cvetković, Spectra of graphs formed by some unary operations. Publ. Inst. Math. (Beograd) 19 (33) (1975), pp.37-41. [9]D. M. Cvetković, Spectrum of the total graph of a graph, Publ. Inst. Math.(Beograd)16 (30) (1973), pp.49-52. [10]F. Buckley and F. Harary, Distance in graphs, Addison-Wesley Pu- lishing Company, Redwood City, CA, 1989. [11]B. Andrasfai, Graph theory: flows, matrices, IOP Publishing Ltd, Adam Hilger, 1991. [12]F. R. Gantmacher, The theory of matrices, Vol. I, Chelsea Publi- shing Company, New York, 1990, pp.45-46. [13]O. Aberth, On the sum of graphs. Rev. Franc. Rech. Operat. 8 (1964), pp.353-358. [14]J. M. Ortega, Matrix theory: a second course, Plenum Press, New York, 1987.pp.240-241. [15]J. Xu and R. Qu, The spectra of hypercubes, Journal of Engineering Mathematics, 16(1999), no.4, pp.1-5. [16]R. Gould, Graph theory, Benjamin/Cummings Publishing Company, Menlo Park, 1988. [17]Herbert S. Wilf, Generatingfunctionology, Academic press, Inc. Boston, 1990. [18]Ya-Fen Wang, The R-spectra of some special graphs, Tamkang Uni- versity , Taipei, 1993. [19]T.J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2nd ed., A Wiley-Interscience public- cation, 1990, pp.1-7. [20]P. Rowlinson, A deletion-contraction algorith for the characteristic polynomial of a multigraph, Proc. Roy. Soc. Edin. 105A(1987), pp. 153 —166. [21]A. Chang, Some properties of the spectra of graphs, Appl. Math. J. Chinese Univ. Series B.14(1999),no.1, pp.103-107. [22]H. Urakawa, The spectrum of an infinite graph, Canad. J. Math. 52(2000), no.5, pp.1057-1084. [23]Y. Teranishi and F. Yasuno, The second largest eigenvlaues of regu- lar bipartite graphs, Kyushu J. Math. 54(2000), no.1, pp.39-54. [24]W.C. Li and P. Sole, Spectra of regular graphs and hypergraphs and orthogonal polynomials, European J. Combin.17(1996),no.5, pp.461- 477. [25]B. Curtin and K. Nomura, Some formulas for spin models on distance-regular graphs, Journal of combinatorial theory, Series B, Vol.75, No.2, Mar 1999, pp.206-236. [26]S. Tomoyuki, The spectrum of infinite regular line graphs, Trans. Amer. Math. Soc.352 (2000), pp.115-132. [27]L. F. Zhao, Some spectral properties of strong regular graphs, Math. Appl. 13(2000), no.4, pp.82-84. [28]C.D. Godsil, Spectra of trees, Convexity and graph theory, North- Holland, Amsterdam, 1984. [29]M. Hofmeister, On the two largest eigenvalues of trees, Linear Algebra Appl. 260(1997), pp.43-59. [30]On spectra of trees and related two-graphs, Fourth Czechoslova- kian Symposium on Combinatorics, Graphs and Complexity (Prac- hatice, 1990), pp337-340. [31]Yves Colin de Verdiėre, Multiplicities of eigenvalues and tree-width of graphs, Journal of combinatorial theory, Series B, Vol.74, No.2, Nov 1998, pp.121-146. [32]J.M. Cohen and F. Colonna, Spectral analysis on homogeneous trees, Advances in applied mathematics, Vol.20, No.2.Feb 1998, pp.253-274.
|