(3.236.118.225) 您好!臺灣時間:2021/05/14 11:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:楊志強
研究生(外文):Yang Zhiqiang
論文名稱:以晶格波茲曼法模擬共軛熱傳
論文名稱(外文):The Lattice Boltzmann Method for Conjugate Heat Transfer
指導教授:郭春寶
指導教授(外文):Kuo Chunpao
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:63
中文關鍵詞:共軛熱傳晶格波茲曼法計算流體力學碰撞傳遞分布函數
外文關鍵詞:conjugate heat transferLattice Boltzmann MethodLBMCompuational Fluid DynamicsCFDcollisionpropagationdistribution function
相關次數:
  • 被引用被引用:7
  • 點閱點閱:476
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:1
本文是應用螺桿的生熱現象中之固液耦合的熱傳即共軛熱傳,以晶格波茲曼法 ( Lattice Boltzmann Method , LBM ) 模擬之。
晶格波茲曼法 ( LBM ) 近來已被用來當作當作是計算流體力學( Computational Fluid Dynamics,CFD ) 方法。波茲曼方程式經過對空間以及時間的離散化之後,得到晶格波茲曼方程式 ( Lattice Boltzmann Equation , LBE )。透過晶格波茲曼法 ( LBM ) 常用的Bhatnagar-Gross-Krook ( BGK ) 碰撞運算模式,利用 Chapman-Enskog 展開式,並由得到的晶格波茲曼方程式 ( LBE ) 推導出包括 Navier-Stokes 方程式的平衡態分佈函數。晶格波茲曼法 ( LBM ) 的運作機制可分為碰撞和傳遞兩個步驟,藉由上述運作機制所得的分布函數來求得所需的物理量。
本研究首先模擬簡單的流力及熱傳問題以作為程式驗證,然後模擬兩篇期刊中之共軛熱傳論文以與比較之。
The article researches the heat transfer with coupling solid and fluid --- conjugate heat transfer , and uses the Lattice Boltzmann Method ( LBM ) to simulate the problem .
Recently LBM has been used to be Computational Fluid Dynamics ( CFD ) . Discretizing the Boltzmann equation for spatial and time , we can get Lattice Boltzmann Equation ( LBE ) . The collision operator LBE always uses the Bhatnagar-Gross-Krook ( BGK ) model through the Chapman-Enskog expansion , and then we can derive the equilibrium distribution function covering the Navier-Stokes equation . The operation of LBM includes two steps --- collision and propagation . According to above operation , we can get physic quality from distribution function .
First , the research simulates the simple fluid flow and heat transfer problem , and then simulates two paper from the journal to compare the result with LBM .
目錄 …………………………………………………………………… I
圖目錄 …………………………………………………………………IV
一、緒論 ………………………………………………………1
1-1、系統簡介 …………………………………………1
1-2、晶格波茲曼法簡介 ………………………………1
1-3、共軛熱傳 …………………………………………3
二、數值方法 …………………………………………………5
2-1、晶格波茲曼法數值計算 …………………………5
2-1-1、LBGK 模式 …..…………………………6
2-1-2、平面直角座標展開式……………………8
2-2、被動純量晶格波茲曼法 …………………………15
2-3、晶格波茲曼法中邊界條件之定 …………………21
2-3-1、不滑動邊界條件 --- bounce-back …22
2-3-2、速度邊界 ………………………………22
2-3-3、等溫邊界 ………………………………24
2-3-4、絕熱邊界 ………………………………25
2-3-5、固體與流體間界面之處理 ……………25
2-4、晶格波茲曼法之其他模式與改善 ……………26
2-5、晶格波茲曼法模擬新問題的步驟 ……………31
2-6、程式流程 ………………………………………32
三、程式驗證與計算結果 …………………………………35
3-1、管流模式計算 …………………………………35
3-1-1、數值計算 ………………………………35
3-1-2、驗證結果說明 …………………………36
3-2、封閉孔道模式計算 ………………………………37
3-1-1、數值計算 ………………………………37
3-1-2、驗證結果說明 …………………………39
四、模擬結果討論 …………………………………………43
4-1、外部流之共軛熱傳模式計算…………………43
4-1-1、外部流之共軛熱傳的解析解 …………………43
4-1-2、以晶格波茲曼法模擬外部流之共軛熱傳 ……44
4-1-3、模擬結果與討論 ………………………………45
4-2、熱交換器之共軛熱傳模式計算…………………………47
4-2-1、由熱通量所得之正解 …………………………47
4-2-2、以 SIMPLE 模擬熱交換器模式之共軛熱傳 ...48
4-2-3、以晶格波茲曼法模擬熱交換器之共軛熱傳 ……49
4-2-4、模擬結果與討論 ……………………………….49
五、結論與未來研究方向……………………………………………54
5-1、結論 ………………………………………………………54
5-2、未來研究方向 ……………………………………………55
參考文獻 ……………………………………………………………60
[1] X. Shan and H. Chen , Phys. Rev. E , Vol. 47 , pp 1815 ,
1993 .
[2] N. Martys and H. Chen , Phys. Rev. E , Vol. 53 , pp 743 ,
1996 .
[3] Zeev Rotem , ” Conjugate Free Convection from Horizontal ,
Conducting Circular Cylinders “ , Int. J. Heat and Mass
Transfer , Vol. 15 , p 1679 — 1693 , 1972 .
[4] Bengt Sunden , ” Conjugated Heat Transfer from Circular
Cylinders in Low Reynolds Number Flow “ , Int. J. Heat
and Mass Transfer , Vol. 23 , pp 1359 — 1367 , 1980 .
[5] V. I. Bubnovich and P. M. Kolesnikov , ” Conjugate
Transient Heat Transfer in Laminar Natural Convection in a
Horizontal Cylinderical Annulus “ , A. V. Lykov Institute
of Heat and Mass Transfer , Academy of Sciences of the
Belorussian SSR , Minsk. Translated from Inzhenerno-
Fizicheskii Zhurnal , Vol. 51 , No. 4 , pp 576 —583 ,
Oct. 1986 .
[6] Ruey-Hor Yen and Wen-Shien Lee , ” Conjugate Heat Transfer
Analysis in the Entrance Region of s Circular Pipe “ , J.
of the Chinese Society of Mechanical Engineers , Vol. 12 ,
No. 3 , pp 233 —240 , 1991 .
[7] M.A. Al-Nimr and M.A.I. El-Shaarawi , ” Analyical
Solution for Transient Conjugated Heat Transfer in
Parallel Plate and Circulae Ducts “ , Int. Comm. Heat
Transfer , Vol. 19 , p 869 — 878 , 1992 .
[8] Takaji Inamuro , Masato Yoshino , and Fumimaru Ogino , ”
A Non-Slip Boundary Condition for Lattice Boltzmann
Simulations “ , Phys. Fluids , Vol. 7 , No. 12 , pp
2928 — 2930 , Dec. 1995 .
[9] Qisu zou , Shuling Hou , Shiyi Chen , and Gary D.
Doolen , ” An Improved Incompressible Lattice Boltzmann
Model for Time- Independent Flows “ , J. of Stat.
Phys. , Vol. 81 , pp 35 — 48 , 1995 .
[10] F. J. Alexander , H. Chen , S. Chen , and G. D. Doolen ,
Phys. Rev. A , Vol. 46 , pp 1967 , 1992 .
[11] Dieter Wolf-Gladrow , ” A Lattice Boltzmann Equation for
Diffusion “ , J. of Stat. Phys. , Vol. 79 , pp 1023 —
1032 , 1995 .
[12] Guy R.McNamara , Alejandro L.Garcia , and Berni
J.Alder , ” Stabilization of Thermal Lattice Boltzmann
Models “ , J. of Stat. Phys. , Vol. 81 , pp 395 — 408 ,
1995 .
[13] Shiyi Chen , Daniel Martinez , and Renwei Mei , ” On
Boundary Conditions in Lattice Boltzmann Methods “ ,
Phys. Fluid , Vol. 8 , No. 9 , pp 2527 — 2536 , Sep.
1996 .
[14] Xiaoyi He , Li-Shi Luo , and Micah Dembo , ” Some
Progress in the Lattice Boltzmann Method : Reynolds Number
Enhancement in Simulations “ , Physica A , Vol. 239 , pp
276 — 285 , 1997 .
[15] Xiaoyi He , Qisu Zou , Li-Shi Luo , and Micah Dembo , ”
Analytic Solution of Simple Flows and Analysis of Nonslip
Boundary Conditions for the Lattice Boltzmann BGK Model
“ , J. of Stat. Phys. , Vol. 87 , pp 115 — 136 , 1997 .
[16] F.J.Alexander , S. Chen and J.D.Sterling , ” Lattice
Boltzmann Thermodynamics “ , Phys. Rev. E , Vol. 47 , pp
R2249 — R2252 , 1993 .
[17] Xiaowen Shan , ” Simulation of Rayleigh-Benard Convection
Using a Lattice Boltzmann Method “ , Phys. Rev. E , Vol.
55 , pp 2780 — 2788 , 1997 .
[18] J.G.M.Eggels and J. A. Somers , ” Numerical Simulation of
Free Convective Flow Using the Lattice-Boltzmann Scheme
“ , Int. J. Heat and Fluid Flow , Vol 16 , pp 357 — 364 ,
1995 .
[19] R.G.M.van der Sman , M.H.Emst , and A.C.Berkenbosch , ”
Lattice Boltzmann Scheme for Cooling of Packed Cut Flowers
“ , Int. J. of Heat and Mass Transfer , Vol. 43 , pp 577 — 587 , 2000 .
[20] 江文書,何正榮,郭春寶,”晶格波玆曼法解熱傳導方程時邊
界條件之設定”,第七屆全國計算流體力學學術研討會,中華民
國89年8月,墾丁。
[21] Naoki Takada and Michihisa Tsutahara , ” Evolution of
Viscous Flow around a Suddenly Rotating Circular Cylinder
in the Lattice Boltzmann Method “ , Computers & Fluids ,
Vol. 27 , pp 807 — 828 , 1998 .
[22] Qisu Zou and Xiaoyi He , ” On Pressure and Velocity
Boundary Conditions for the Lattice Boltzmann BGK Model
“ , Phys. Fluids , Vol. 9 , pp 1591 — 1598 , 1997 .
[23] Paul Lavallee , Jean Pierre Boon , and Alain Noullez , ”
Boundaries in Lattice Gas Flows “ , Physica D , Vol. 47 ,
pp 233 — 240 , 1991 .
[24] J. Sucec , ” Exact Solution for Unsteady Conjugated Heat
Transfer in the Thermal Entrance Region of a Duct “ , J.
of Heat Transfer , Vol. 109 , pp 295 — 299 , May 1987 .
[25] N. C. Markatos and C. A. Pericleous , ” Laminar and
Turbulent Natural Convection in an Enclosed Cavity “ ,
American Society of Mechanical Engineers , Heat Transfer
Division, (Publication) HTD Natural Convection in
Enclosures , Vol. 26 , pp 59 — 68 , 1983 .
[26] A. V. Luikov , ” Conjugate Convective Heat Transfer
Problems “ , Int. J. of Heat and Mass Transfer , Vol.
17 , pp 257 — 265 , 1974 .
[27] Xi Chen and Peng Han , ” A Note on the Solution of
Conjugate Heat Transfer Problems Using SIMPLE-Like
Algorithms “ , Int. J. of Heat and Fluid Flow , Vol 21 ,
pp 463 — 467 , 2000 .
[28] Dieter A. Wolf-Gladrow , ” Lattice Gas Cellular Automata
and Lattice Boltzmann Models “ , Springer , 2000 , ISBN 3-
540-66973-6 .
[29] Xiaoyi He and Gary D. Doolen , ” Lattice Boltzmann Method
on a Curvilinear Coordinate Syste : Vortex Shedding behind
a Circular Cylinder “ , Phys. Rev. E , Vol. 56 , No. 1 ,
pp 434 — 450 , July 1997 .
[30] Xiaoyi He and Gary D. Doolen , ” Lattice Boltzmann Method
on Curvilinear Coordinates System : Flow around a Circular
Cylinder “ , J. of Computational Physics , Vol. 134 , pp
306 — 315 , March 1997 .
[31] I. Halliday , L. A. Hammond , C. M. Care , K. Good , and
A. Stevens , ” Lattice Boltzmann Equation Hydrodynamics
“ , Phys. Rev. E , Vol. 64 , pp 011208-1~8 , 2001 .
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔