(3.235.236.13) 您好!臺灣時間:2021/05/15 04:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林坤生
研究生(外文):Lin, K.S.
論文名稱:統計能量法中隧道效應的探討
論文名稱(外文):Investigation of Tunnelling Effect in Statistical Energy Analysis
指導教授:鄭志鈞
指導教授(外文):Cheng, C.C.
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:82
中文關鍵詞:隧道效應損失因子矩陣自損因子耦損因子轉換函數統計能量法
外文關鍵詞:Tunnelling EffectLoss Factor MatrixInternal Loss FactorCoupling Loss FactorTransfer FunctionStatistical Energy Analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要目的在探討SEA的模型中,對於非直接耦合的子系統是否有隧道效應存在。首先應用PIM方法輪流激振於每個子系統,得其速度響應對激振源大小的轉換函數關係,由轉換函數求得損失因子矩陣,並探討在不同的激振頻率、耦合強度及子系統的自損因子下,對損失因子矩陣所造成的影響,並與傳統SEA的結果作比較,其結果顯示當模態重疊率愈大時,則SEA所得之結果會愈接近實際狀況,且在高頻或高自損因子時,隧道效應會很小。再進一步利用三根直線耦合樑的簡易模型,能量則以縱波傳遞方式,探討隧道效應在何時特殊情形下不會存在。結果顯示,SEA的模型中的確是有隧道效應存在著,但是當振動波在子系統的耦合處產生節點,會使隧道效應消失。且當振動波在耦合處不為波峰時,則隨著激振頻率的增加或較大阻抗的子系統存在於直線耦合的系統內,亦會使得隧道效應消失。

The tunneling effect, which is defined as the power transferred be-tween physically uncoupled subsystems, is investigated. A transfer func-tion method (TFM) based on the matrix inversion approach is developed to determine the coupling loss factors, and these parameters are compared with those calculated by the wave propagation analysis method (WPA). A system which includes three rods coupled inline is deliberately chosen to highlight the differences in coupling loss factors calculated from these two methods. Furthermore, the tunneling effect is studied through this simple structure of inline configuration. Result shows that the coupling loss factors derived from the WPA and those from TFM are close to each other while the subsystems are heavily-damped, weakly coupling or ex-cited at high frequencies, which are exact within the classical assumption of Statistical Energy Analysis (SEA). One the other hand, the so-called tunneling effect occurs primarily due to the improper use of the SEA in analyzing the vibroacoutic responses of a system of which the subsystems are lightly-damped or strongly coupled.

表目錄Ⅲ
圖目錄Ⅳ
第一章緒 論1
1-1 前言1
1-2 統計能量法的介紹2
1-3 研究動機與目的4
1-4 文獻回顧5
1-4-1 統計能量法在參數研究方面之文獻6
1-4-2 改良SEA方法之準確度11
第二章理論分析14
2-1 統計能量法的基礎理論14
2-2 物理模型描述19
2-3 運動方程式推導21
2-4 轉換函數法之運動方程式25
第三章轉換函數在實驗上應用29
3-1 鋼板音振實驗29
3-1-1 實驗動機與目的29
3-1-2 實驗儀器29
3-1-3 實驗方法與步驟33
3-1-4 實驗結果與討論34
3-2 蜂巢板音振實驗38
3-2-1 實驗動機與目的38
3-2-2 實驗儀器38
3-2-3 實驗裝置與步驟44
3-2-4 實驗結果與討論47
第四章隱藏式能量傳遞效應的探討52
4-1 轉換函數法與波理論之比較探討52
4-1-1 物理模型參數52
4-1-2 激振頻率對隧道效應的影響53
4-1-3 阻尼對損失因子矩陣的影響56
4-2 隧道效應的影響與探討63
4-2-1 物理模型之簡化分析63
4-2-2 結果分析與討論64
第五章結論與未來研究展望69
5-1 結論69
5-2 未來研究展望70
參 考 文 獻72
附錄A 三根直線耦合樑的損失因子矩陣之推導75
表 目 錄
表3-1海洋大學實驗之加速規靈敏度32
表3-2加速規之靈敏度40
表3-3麥克風之靈敏度40
表4-1鋁材料特性52
表4-2點負荷大小52
表4-3樑材料特性及幾何尺寸54
表4-4SEA所求得之損失因子矩陣(fc=1000Hz)54
表4-5轉換函數法所求得之損失因子矩陣(fc=1000Hz)55
表4-6SEA所求得之損失因子矩陣(fc=10000Hz)55
表4-7轉換函數法所求得之損失因子矩陣(fc=10000Hz)55
表4-8平板材料特性及幾何尺寸57
表4-9SEA所求得之損失因子矩陣(fc=10000Hz)60
表4-10轉換函數法所求得之損失因子矩陣(fc=10000Hz)60
表4-11樑材料特性及幾何尺寸60
表4-12SEA所求得之損失因子矩陣(fc=10000Hz)60
表4-13轉換函數法所求得之損失因子矩陣(fc=10000Hz)60

[1]Heron, K. H., 1994, “Advanced Statistical Energy Analysis,” Phil. Trans. R. Soc. Lond. A., 346, pp. 501-510.
[2] Langhe, K. D., and Sas, P., 1996, “Statistical Analysis of the Power Injection Method,” Journal of Acoustical Society of America, 100, No.1, pp. 294-303.
[3] Lyon, R. H., and DeJong, R. G., 1995, Theory and Application of Statistical Energy Analysis, Butterworth-Heinemann, second edition, Washington.
[4]Clarkson, B. L., and Pope, R. J., 1981, “Experimental Determination of Modal Densities and Loss Factor of Flat Plates and Cylinders,” Journal of Sound and Vibration 77, No. 4, pp.535-549.
[5] Brown, K. T., 1984, “Measurement of Modal Density : An Improved Technique for Use on Lightly Damped Structures,” Journal of Sound and Vibration, 96, No. 1, pp.127-132.
[6] Sablik, M. J., Beissner, R. E., Silvus, H. S., and Miller, M. L., 1985, “Statistical Energy Analysis, Structural Resonances, and Beam Net-works,” Journal of Acoustical Society of America, 77, No. 3, pp. 1038-1045.
[7] Keswick, P. R., and Norton, M. P., 1987, “A Comparison of Modal Density Measurement Techniques,” Applied Acoustics, 20, pp. 137-153.
[8] Renji, K., Nair, P. S., and Narayanan, S., 1996, “Modal Density of Composite Honeycomb Sandwich Panels,” Journal of Sound and Vibration 195, No. 5, pp. 687-699.
[9] Crandall, S. H., and Lotz , R., 1971, “On the Coupling Loss Factor in Statistical Energy Analysis,” Journal of Acoustical Society of America, 49, pp. 352-356.
[10] Langley, R. S., 1989, “A General Derivation of the Statistical Energy Analysis Equations for Coupled Dynamic Systems,” Journal of Sound and Vibration, 135, No. 3, pp.499-508.
[11] Langley, R. S., 1990, “A Derivation of the Coupling Loss Factors Used in Statistical Energy Analysis,” Journal of Sound and Vibration, 141, No. 2, pp. 207-219.
[12] Craik, R. J. M., 1990, “Sound Transmission Paths through a Statisti-cal Energy Analysis Model,” Applied Acoustics, 3, pp.45-55.
[13] Mace, B. R., 1993, “The Statistical Energy Analysis of Two Con-tinuous One Dimensional Subsystems,” Journal of Vibration and Acoustics, 166, No. 3, pp. 429-461.
[14] Manning, J. E., 1994, “Formulation of SEA Parameters Using Mo-bility Functions,” Phil. Trans. R. Soc. Lond. A., 346, pp. 477-488.
[15] Bercin, A. N., 1996, “An Assessment of the Effects of In-Plane Vi-brations on the Energy Flow between Coupled Plates,” Journal of Sound and Vibration 191, No. 5, pp. 661-680.
[16] Yap, F. F., and Woodhouse, J., 1996, “Investigation of Damping Ef-fects on Statistical Energy Analysis of Coupled Structures,” Journal of Sound and Vibration, 197, No. 3, pp. 351-371.
[17] Cuschieri, J. M., and McCollum, M. D., 1996, “In-Plane and Out-of-Plane Wave’s Power Transmission through an L-Plate Junc-tion Using the Mobility Power Flow Approach,” Journal of Acousti-cal Society of America, 100, No.2, pp. 857-870.
[18] Hugin, C. T., 1997, A Physical Description of the Response of cou-pled Beams,” Journal of Sound and Vibration, 203, No.4, pp. 563-580.
[19] Hugin C. T., 1998, “Power Transmission between Two Finite Beams at Low Modal Overlap,” Journal of Sound and Vibration, 212, No. 5, pp. 829-854.
[20] Langley, R. S., and Bercin, A. N., 1994, “Wave Intensity Analysis of High Frequency Vibrations ,” Phil. Trans. R. Soc. Lond. A., 346, pp. 489-499.
[21] Pinnington, R. J., and Lednik, D., 1996, “Transient Statistical Energy Analysis of An Impulsively Excited Two Oscillator System,” Journal of Sound and Vibration, 189, No. 2, pp. 249-264.
[22] Pinnington, R. J., and Lednik, D., 1996, “Transient Energy Flow Between Two Coupled Beams,” Journal of Sound and Vibration, 189, No. 2, pp. 265-287.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top