(3.236.214.19) 您好!臺灣時間:2021/05/10 04:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳南輝
論文名稱:質傳分離劑的選擇與製程開發
論文名稱(外文):Selection of Mass Separation Agents and Separation Process Development
指導教授:程學恆
學位類別:碩士
校院名稱:長庚大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:106
中文關鍵詞:質量分離劑汽液相平衡熱力學一致性檢測殘餘曲線圖
外文關鍵詞:mass separation agentsvapor-liquid equilibriumconsistency testresidue curve maps
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主旨乃探討質量分離劑對乙/三氯乙雙元系統的影響。因乙會與三氯乙形成共沸物,使用傳統蒸餾方式分離不易純化,故利用不同的質量分離劑,改變其相對揮發度,以較經濟之共沸/萃取蒸餾程序獲得高純度三氯乙。
本研究使用一套汽液相平衡裝置來測得常壓下不同分離劑在上述兩成分系統中之無限稀釋活性係數,並加以分析比較,來探討數種質量分離劑對乙/三氯乙兩成分系統的汽液平衡所產生的影響,再依相對選擇率來挑選適合該系統之質量分離劑,此將作為共沸/萃取蒸餾程序中分離劑選擇之重要依據。
經篩選後選用異戊二烯作為質量分離劑,對其進行進一步汽液相平衡實驗,同時驗證實驗結果符合熱力學一致性檢測,並將實驗數據進行NRTL活性係數模式迴歸,並將結果建構出殘餘曲線圖,來開發適合該系統之分離程序。

The research is to study the effect of mass separation agents to acetonitrile/ trichloroacetonitrile in binary system. Since acetonitrile and trichloroacetonitrile will become azeotrope, it is difficult to purify them with traditional distillation method. Hence, using various mass separation agents with azeotrope/extractive distillation process to change their relative volatility is more economical to receive high purity trichloroacetonitrile.
The study is using a vapor-liquid equilibrium equipment to measure the infinite dilution activity coefficient. Moreover, we study the effect of mass separation agents to acetonitrile/ trichloroacetonitrile two components system in the vapor-liquid equilibrium. Finally, according to the selectivity to chose the best mass separation agents in the system. The statement above is the important evidence to chose entraner in azeotrope/extractive distillation process.
After the experiment, we decide isoprene as the mass separation agents. Then we use it starting vapor-liquid equilibrium experiment again, after that, we find the results correspond to thermodynamic consistency test. Finally, we use data to get coefficient by NRTL model. The results of NRTL regression can be drawn in the residue curve maps to create new separation process which suits the system.

目錄 v
表目錄 ix
圖目錄 xi
摘要 xiii
Abstract xiv
第1章 緒論 1
1.1 前言 1
1.2 研究動機 2
第2章 文獻回顧 4
2.1 共沸蒸餾與萃取蒸餾 4
2.1.1 共沸蒸餾與萃取蒸餾介紹 4
2.1.2 共沸蒸餾與萃取蒸餾的目的 5
2.1.3 共沸蒸餾與萃取蒸餾的應用實例 5
2.2 汽液相平衡 8
2.3 分離劑選擇 10
2.3.1 分離可行性【10,11】 10
2.3.2 模式預測 12
2.3.3 分離劑的分類【14】 13
2.3.4 分離劑篩選 15
2.4 活性係數 22
2.5 無限稀釋活性係數 23
2.5.1 無限稀釋的定義 23
2.5.2 求無限稀釋活性係數的目的 24
2.5.3 無限稀釋活性係數的應用 24
2.6 求得活性係數的原理與發展 24
2.7 實驗求取無限稀釋活性係數活性係數的方法 28
2.7.1 Vapor-Liquid Equilibrium 28
2.7.2 Gas-Liquid Chromatography (GLC) Method【16,22】 29
2.7.3 Gas Stripping (GS) Method【23,27】 32
2.7.4 Liquid-Liquid Chromatography (LLC) Method【31】 33
2.8 汽液相平衡一致性檢測 35
2.8.1 Gibbs-Duhem方程式 35
2.8.2 檢測方法介紹 37
2.8.3 三元成分系統的一致性檢測 39
2.9 殘餘曲線圖(Residue Curve Maps) 40
2.9.1 殘餘曲線圖簡介 40
2.9.2 殘餘曲線圖特性 42
2.9.3 繪製殘餘曲線圖步驟 44
第3章 實驗方法與裝置 46
3.1 汽液相平衡實驗裝置類型 46
3.2 實驗數據的整理 51
3.3 本實驗使用的儀器 56
3.3.1 汽液相平衡裝置 56
3.3.2 分析儀器與條件 59
3.4 實驗方法與步驟 60
3.4.1 實驗流程 60
3.4.2 測試實驗 62
3.4.3 溶劑篩選實驗 63
3.4.4 GC檢量線 65
3.4.5 汽液相平衡實驗 66
第4章 實驗結果與討論 67
4.1 測試實驗結果 67
4.2 三氯乙之飽和蒸汽壓 70
4.3 溶劑篩選實驗結果 71
4.4 GC檢量線 87
4.5 汽液相平衡實驗 89
第5章 結論 98
參考文獻 103

1. K. E. Porter, J. D. Jenkins, and D. W. Reay, “Distillation and absorption”, Hemisphere Pub. Corp., N. Y. (1992).
2. M. Minotti, M. F. Doherty, and M. F. Malone, Ind. Eng. Chem. Vol. 76 Part A, 361 (1998).
3. C. J. King, “Separation Processes,” McGraw-Hill, N.Y. (1980).
4. R. H. Perry et al., “Chemical Engineers’ Handbook,” McGraw-Hill, N.Y. (1950).
5. S. J. Han, H. M. Lin, and K. C. Chao, Chem Eng. Sci., Vol. 43, 2327 (1988).
6. H. R. Null, “Phase equilibrium in process design,” Wiley-Interscience, N. Y. (1970).
7. H. D. Ursell, Proc. Cambridge Phil. Soc., Vol. 23, 685 (1927).
8. J. M. Prausnitz, R. N. Lichtenthaler, and E. G. Azevedo “Molecular Thermodynamics of Fluid-Phase Equilibria,” Prentice-Hall, Englewood Cliffs, N. J. (1986).
9. C. J. Geankoplis, “Transport Processes and Unit Operations,” Prentice-Hall, N. J. (1995).
10. M. Van Winkle, “Distillation,” McGraw-Hill, N.Y. (1967).
11. A. Vega, F. Diez, R. Esteban, and J. Coca, Ind. Eng. Chem. Res., Vol. 36, 803 (1997).
12. J. H. Hildebrand, J. M. Prausnitz, and R. L. Scott, “The Solubility of Gases, Liquids, and Solids,” Van Nostrand Reinhold, N. Y. (1970).
13. J. Gmehling, J. Li, and M. Schiller, Fluid Phase Equilibria, Vol. 27, 171 (1986).
14. R. H. Ewell, J. M. Harrison, and L. Berg, Ind. Eng. Chem., Vol. 36, 871 (1944).
15. D. P. Tassios, Chem. Eng., Vol. 10, 118 (1969).
16. J. Gmehling and U. Onken, DECHEMA Chemistry Data Series, Frankfurt/Main (1978~1994).
17. L.H. Horsley, “Azeotropic Data,” American Chemical Society, Washington, D. C. (1952~1973).
18. S. M. Walas, “Phase Equilibria in Chemical Engineering,” Butterworth Publishers (1985).
19. K. Kojima, S. Zhang, and T. Hiaki, Fluid Phase Equilibria, Vol. 131, 145 (1997).
20. M. F. Gautreaux and J. Coates, AIChE J., Vol. 1, 496 (1955).
21. R. Kobayashi, H. A. Deans, and P. S. Chappelear, Ind. Eng. Chem., Vol. 59, 63 (1967).
22. S. C. Anand, J. P. E. Grolier, S. Klyohara, C. J. Halpin, and G. C. Benson, J. Chem. Eng. Data, Vol. 20, 184 (1975).
23. J. C. Leroi, J. C. Masson, H. Renon, J. F. Fabrics, and H. Sannier, Ind. Eng. Chem. Process Des. Dev., Vol. 16, 139 (1977).
24. C. A. Eckert, C. A. Newman, G. L. Nicolaides, and T. C. Long, AIChE J., Vol. 27, 33 (1981).
25. P. Alessi, M. Fermeglia, and I. Kikic., Fluid Phase Equilibria, Vol. 29, 249 (1986).
26. D. M. Tramp and C. A. Eckert, AIChE J., Vol. 36, 1045 (1993).
27. J. J. Li, and P. W. Carr, Anal. Chem., Vol. 65, 1443 (1993).
28. H. Orbey and S. I. Sandler, Ind. Eng. Chem. Res., Vol. 30, 2006 (1991).
29. G. Tse and S. I. Sandler, J. Chem. Eng. Data, Vol. 39, 354 (1994).
30. I. Landau, A. J. Belfer, and D. C. Locke, Ind. Eng. Chem. Res., Vol. 30, 1900 (1991).
31. A. J. P. Martin, and R. L. M. Synge, Biochem. J., Vol. 35, 91 (1941).
32. K. Kojima, N. M. Moon, and K. Ochi, Fluid Phase Equilibria, Vol. 56, 269 (1990).
33. P. L. Jackson and R. A. Wilsak, Fluid Phase Equilibria, Vol. 103, 155 (1995).
34. H. C. Van Ness, S. M. Byer, and R. E. Gibbs, Fluid Phase Equilibria, Vol. 19, 238 (1973).
35. J. Wisnsak, Ind. Eng. Chem. Res., Vol. 32, 1531 (1993).
36. C. McDermott and S. R. Ellis, Chem. Eng. Sci., Vol. 20, 293 (1965).
37. H. N. Pham and M. F. Doherty, Chem. Eng. Sci., Vol. 45, 1823 (1990).
38. H. N. Pham and M. F. Doherty, Chem. Eng. Sci., Vol. 45, 1837 (1990).
39. H. N. Pham and M. F. Doherty, Chem. Eng. Sci., Vol. 45, 1845 (1990).
40. A. F. Gert-Jan Fien and Y. A. Liu, Ind. Eng. Chem. Res., Vol. 33, 2505 (1994).
41. H. Matsuyama and H. Nishimura, J. Chem. Eng. Jpn., Vol. 10, 181 (1977).
42. E. R. Foucher, M. F. Doherty, and M. F. Malone, Ind. Eng. Chem. Res., Vol. 24, 955 (1985).
43. D. F. Othmer, R. Gilmont, and J. J. Conti, Ind. Eng. Chem., Vol. 52, 625 (1960).
44. D. Zudkevitch, Chem. Eng. Comm., Vol. 116, 41 (1992).
45. M. Stonislaw, Fluid Phase Equilibria, Vol. 8, 197 (1982).
46. S. Wrenn, V. Lusvardi, G. Whirmyre, D. Buttrey, Chem. Eng. Ed., 74, Winter (2000).
47. E. Hala., J. Pick, V. Fried, and O. Vilim, Vapor Liquid Equilibrium, Pergamon (1967).
48. R. C. Reid, J. M. Prausnitz, and B. E. Poling, “The Properties of Gases & Liquids,” McGraw-Hill, N.Y. (1958).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔