(3.238.130.97) 您好!臺灣時間:2021/05/18 11:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:游雅芸
研究生(外文):Yu,Ya-Yu
論文名稱:流體化床結晶技術在含銅廢水處理的應用
論文名稱(外文):The Application of Fluidized-Bed Crystallization Technology in Copper-containing Wastewater Treatment
指導教授:蕭立鼎
指導教授(外文):Shiau,Lie-Ding
學位類別:碩士
校院名稱:長庚大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:175
中文關鍵詞:流體化床結晶藥劑進料莫耳比pH值迴流比進料廢水負荷量
外文關鍵詞:Fluidized-BedCrystallizationCopperCT/Cu feeding ratiopH valueRecirculation ratioCu-loading
相關次數:
  • 被引用被引用:12
  • 點閱點閱:344
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來,流體化床結晶技術(FBPRs)已經廣泛的被應用在處理重金屬廢水上。本研究是利用流體化床結晶技術處理事業廢水中含銅廢水。藉由碳酸鈉加入,廢水中形成含銅之化合物覆蓋在擔體表面,進行流體化床操作因子的探討。其重要因子影響包括pH值、藥劑進料莫耳比(CT/Cu)、迴流比(R)及進料廢水負荷量(Cu-loading)。本實驗之研究目的是找出最佳操作條件、達到事業廢水排放標準及找出最大結晶量。
實驗結果顯示,pH值對系統有相當大影響。當pH=8,Cu-loading為1.54kg/m2hr、迴流比(R)為41.25、藥劑進料莫耳比(CT/Cu)為2/1,有約50﹪結晶比例;另pH=9有23﹪結晶比例,pH=10有26﹪結晶比例,其放流水濃度均可降至3ppm以下。當CT/Cu=3/1及pH=8時,廢水處理並未能降至3ppm以下。因此,過多碳酸鹽將產生高過飽和度,造成大量初成核產生。在高迴流比下,床體底部進料濃度大量被稀釋,過飽和度會隨之下降。因此自發性初成核是被抑制,結晶比例是愈高。
在pH=8,Cu-loading為1.54kg/m2hr、迴流比(R)為41.25、藥劑進料莫耳比(CT/Cu)為2/1,在操作6小時後,經由粒徑分析儀量測,石英砂由原本455.58μm增大至499.28μm。另由SEM可觀測出含棉絮狀結晶物是覆蓋在擔體表面上,且隨時間增加,粒子是有增大的情形發生。再由XRD繞射分析得知含有Cu3(CO3)2(OH)2 (Azurite)之組成。本實驗流體化床操作條件下,結晶比例最高為40〜50﹪,因此沉澱比例仍然相當高。
In recent years fluidized bed pellet reactors (FBPRs) have been extensively applied in the removal of heavy metals from wastewater . In this research , the crystallization process of a fluidized bed pellet reactor was studied in the treatment of the copper-containing wastewater . Sodium carbonate was added as the reagent solution to form crystals of copper-containing compound on the surface of the pellets in a fluidized pellet reactor . We investigated the effects of some important factors , including pH value , CT/Cu feeding ratio , recirculation ratio and Cu-loading , on the performance of the fluidized bed crystallization technique .
The results showed that pH had a great effect on the crystallization efficiency of copper . At pH=8 , Cu-loading of 1.54kg Cu per m2 of reactor cross-section per hour , recirculation ratio of 41.25 and feeding ratio CT/Cu of 2/1 mol/mol, the crystallization efficiency of copper could reach about 50﹪. At pH=9 and pH=10 , the crystallization efficiency could reach about 23﹪and 26﹪, respectively . Then , the effluent concentration of copper could be reduced to 3ppm . At feeding ratio CT/Cu of 3/1 mol/mol and pH=8 , the effluent concentration of copper could not be reduced to 3 ppm . High concentration of carbonates would lead to high supersaturation and subsequently the spontaneous nucleation occurred . High recirculation ratio would lead to a decrease in the degree
of supersaturation . Therefore , the spontaneous nucleation was inhibited and the crystallization efficiency was increased .
At pH=8 , Cu-loading of 1.54kg Cu per m2 of reactor cross-section per hour , recirculation ratio of 41.25 and feeding ratio CT/Cu of 2/1 mol/mol , pellet size increased from 455.58μm to 499.28μm during 6 hr operation . SEM showed that cotton-shape crystals were grown on the surface of pellet and their sizes increased during the operation . The component of Cu3(CO3)2(OH)2 (Azurite) was detected by XRD . The crystallization efficiency was found within the range of 40〜50﹪ and therefore the precipitation efficiency was still rather high in this process .
中文摘要………………………………………………………………VI
英文摘要………………………………………………………………VII
目錄……………………………………………………………..……..IX
圖目錄………………………………………………………………....XIII
表目錄…………………………………………………………...…XVII
第一章 、緒論…………………………………………………….………1
第二章 、理論基礎……………………………………………………….8
2-1 過飽和度與平衡濃度…………………………………………...8
2-1-1 可溶物系過飽和度定義………………………………..10
2-1-2 微溶物系過飽和度定義 ………………………………11
2-1-3 結晶成長動力…………………………………………..13
2-2 過飽和溶液之介穩區………………………………………….15
2-3 晶體成核現象………………………………………………….18
2-3-1 結晶與沉澱……………………………………………..18
2-3-2 成核現象………………………………………………..20
2-4 流體化床原理………………………………………………….23
2-4-1 流體化條件……………………………………………..23
2-4-2 最小流體化速度………………………………………..25
2-4-3 終端速度………………………………………………..25
2-4-4 流體化床………………………………………………..25
2-4-5 流體化床優缺點………………………………………..29
第三章 、原理 ………………………………………………………….30
3-1 晶體成長基礎理論…………………………………………….30
3-1-1 Step Dislocation Theory…………………………………30
3-1-2 Burton-Cabrera-Frank Model …………………………...31
3-1-3 Two-Step Model…………………………………………31
3-2 流體化床質傳式………………………………………….……36
3-2-1 質傳現象………………………………………………..36
3-2-2 質傳係數………………………………………………..36
3-2-3 晶體成長動力式之係數求取法………………………..39
3-3 流體化床技術回顧……………………………………….……42
3-4 流體化床結晶技術之原理……………………………….……47
3-4-1 碳酸銅結晶原理…………………………………... …..47
3-4-2 顯著因子之探討………………………………………..51
3-5 流體化床之質量平衡式……………………………………….52
第四章 、實驗裝置與研究程序………………………………………...54
4-1 流體化床結晶操作…………………………………………….54
4-1-1 擔体之選擇……………………………………………..54
4-1-2 介穩區界定……………………………………………..57
4-1-3 實驗藥品……………………………………………. …60
4-1-4 分析儀器………………………………………………..61
4-2 流體化床結晶操作要點………………………………….……62
4-3 實驗裝置……………………………………………………….63
4-4 流體化床設備操作程序……………………………………….67
第五章 、結果與討論…………………………………………………...68
5-1進料藥劑莫耳比………………………………………………...68
5-1-1 無pH控制………………………………………………68
5-1-2 有pH控制………………………………………………69
5-1-3 進料藥劑莫耳比與粒徑之關係………………………..80
5-2 pH值…………………………………………………………….82
5-2-1 pH值對莫耳比影響…………………………………….82
5-2-2 pH值與粒徑之關係…………………………………….89
5-3 迴流比………………………………………………………….94
5-3-1 迴流比影響……………………………………………..94
5-3-2 迴流比與粒徑之關係…………………………………. 94
5-4 廢水負荷量……………………………………………………98
5-4-1 銅負荷量影響………………………………………….98
5-4-2 銅負荷量與粒徑之關係……………………………….98
5-5 濾心之影響…………………………………………………...103
5-6 時間對沉澱量與粒徑之關係………………………………...106
5-7 晶體SEM表面觀察…………………………………………..109
5-8 XRD晶體成份分析…………………………………………125
第六章 、結論與建議………………………………………………….129
符號說明……………………………………………………………….134
參考文獻……………………………………………………………….136
附錄A 事業、污水下水道系統及建築物污水處理設施之放流水標
準……………………………………………………………...141
附錄B 流體化床結晶技術晶體成長數據…………………………..143
附錄C XRD繞射標準聯合委員會(JCPDS)資料……………………167
附錄D XRD繞射圖譜………………………………………………..173
Akor,H.,”Continuous High-Rate Removal of Chromate in a Fluidized Bed
without Sludge Generation“,Water Sci.Tech.,30,7,31(1994).
Bailey,R.P., T.Bennett. and M.M Benjamin.,”Sorption onto and recovery of Cr(Ⅵ)using iron-oxide-coated sand”,Water Sci.Technol,26,5-6,
1239(1992).
Basta,N.,”Getting the Metal out of Spent Plating Baths“,Chem.Eng,90,10
,22(1983).
Chowdhury,J.,”New Routes Buoy Efforts to Trim Heavy-Metal Wastes”,
Chem.Eng.,94,14,26(1987).
Dirksen,J.A. and T.A.Ring,”Fundamentals of Crystallization:Kinetic Effects on Particle Size Distribution and Morphology”,Chem.Eng.
Sci.,40,10,2389(1991).
E.Vuori,A ,J.O.Huunan-SeppäläKilpiö, J.Scand. Health.Work Environ.
,4,167(1978).
Eggers,E, A.H.Dirzwagerand H.Van der Honing,”Full-Scale Experiences with Phosphate Crystallization in a Crystalactor”,Wat Sci.Tech.,
24,333,(1991).
Fishbein,L, A.Furst and Plenum Press Eds.,”Toward Mechanisms of Metal Carcinogenesis,in Biological Effect of Metals”,New York,295
(1987).
Friberg G.L.,Sci.Total Environ.,4,373(1975).
Grareland,A.,J.C.Van Dijk.,P.J.De Moel.and J.H.C.M.Oomen.,
”Development in Water Softening by Mean of elletReactors”,Journal AWWA,75,619(1983).
Halloran,S.P.,Systemic Aspects of Chemistry,Vol.1,D.F.Williams,Ed.,
CRC Press,Boca Raton,Fla.,211(1981).
Kim,B.M.,”Theatment of Metal-Containing Wastewater with Calcium
Sulfide”AICHE Symp.Ser,77,39(1981).
Nielsen,A,E., J.M.Toft,”Electrolyte Crtstal Growth Kinetics”,J.of Crystal
Growth,67, 278(1984a).
Nielsen,A.E.,”Electrolyte Crtstal Growth Mechanisms.”,J.of Crystal
Growth,67,289(1984b).
Nielsen,A.E.,”Precipitetes:Formation Coprecipitation,and Aging., ”,Ch
27,Treasite on Analytic Chem.Part I Section D,269(1982).
Nielsen,P.B.,T.C.Christensen and M.Vendrup,“Continuous Removal of Heavy Metals From FGD Wastewater in a Fluidised Bed Without
Sludge”,Wat.Sci.Tech.,36,2-3,391(1997).
Pethes,G.,”Elemental Analysis of Biological materials”,IAEA,Vienna,3,
(1980).
Piscator, M.,”Handbook on the Toxicology of Metals,L.Friberg, G.Nordberg,V.B.Vouk,Eds.,Elsevier/North Holland”,amsterdam,411
(1979).
Ping Zhou,Ju-Chang Huang,Alfred W.F.LI.,and Shirly Wei ,”Heavy Metal Removal from Wastewater in Fluidized Bed Reactor”,Wat.Res., 33,8, 1918(1999).
Randolph.,A. D.and M.A.Larson.,”Theory of Particulate Processes”,
Academic Press, N.Y(1988).
Scholler,M., J.C.Van Dijk and D Wilms.,”Crystalactor Recovers Metals
or Anions from Industrial Waste Water”,DHV Water BV,1 (1985).
Scholler,M., J.C Van Dijk and Wilms D.A.,”Recovery of Heavy Metals by Crystallization in the Pellet Reactor”,Environmental Technology,
k .De Waal and W.Van den Bink(Eds). M. Nijhoff Publ., Dordrecht,
294(1987)
Scholler,M., J.C.Van Dijk., A.Van Haute., D.Wilms., L.Pawlowski.and H..Wasag,”Recovery of Heavy Metals by Crystallization in the Pellet Reactor ,a Promising Development”, 6th, International Conference
Chemistry for the Protection of the Environment, 77(1987).
Scholler,M., J.C Van Dijk.and D.Wilms.,”Fluidized Bed Pellet Reactor to
Recover Metal or Anions”,Metal Finishing,89,46(1991).
Scholler,M., J.C Van Dijk.and D.Wilms.,Metal Finishing ,89,46(1991).
Seckler,M.M. et al.,”Calcium Phosphate Precipitation in a Fluidized Bed in Relation to Process Condition:a Black Box Approach”,Water
Sci.Technol.30,7,1677 (1996).
Sohnel,O., J.Garside ,”Basic Principles and Industrial Application”,
Redwood,London,75(1992).
Tournie P., C.Laguerie,J.p.Conderc,“Correlations for Mass Transfer Between Fluidized Spheres and a Liquid”,Chem.Eng.Sci.,34,1247
(1979)
Thomas,E.H., E.S.Vernon,”Combined Removal of Cr,Cd and Ni from
wastes”,Environ.Prog.3,1,12(1984).
Van Ammers,M., J.C.Van Dijk., A.Graveland.and P.A.Nuhn.,”State of the art of Pellet Softening in the Netherlands”,Water Supply,4,223
(1986).
Van Dijk ,J.C.and H.Braakensiek,”Phosphate Removal by Crystallization
in a fluidized bed“,Wat Sci.Tech,17,133(1984).
Van Dijk,J.C and D.A.Wilms,”Water Treatment Without Waste Materials
:Fundameentals and State-of-the-Art of Pellet Reactor”,中荷廢水處
理技術研討會,工研院化工所,B-16(1992).
Van der Veen,C.and A.Graveland,”Central Softening by Crystallization in
a Fluidized-Bed Process”, Journal AWWA., June, 51(1988).
Wasay,S.A.,S.Tokunaga,M.J.Haron,A.Uch iumi,T.Nagahiro and B.k.Puri,
”Removal of Cu,Ir,Pd and Os Ions in the from of Chelates From wastew Aters By aphthalene”,Environ.Sci.Health,A29,9,1817(1994).
Wilnsk ,D,Vercaemst and J.C.Van Dijk,“Recovery of Silver by Crystallization of Silver Carbonate in a Fluidized Bed Reactor”,
Wat.Res,,26,2,235(1992).
Young,K.and W.Robert,”The Effect of Weak Chelating Agents in the Removal of Heavy Metals by Precipitation Process”,Environ Prog.
,5,3,,147(1986).
阮國棟”工業廢水處理技術(I)─有害成份去除法”,科技出版社(1988)
吳鎮芳”鉀明礬之結晶動力學研究”,博士論文,國立台灣大學化學工程研究所(1990).
洪再生”流體化床結晶技術回收廢水中重金屬銅之探討”,碩士論文,
國立中央大學環境工程研究所(1996).
高肇籓,張祖恩”水污染防制”,第13期中國水利工程學會,87(1993)
曹志明”氟化鈣結晶動力學之研究”,碩士論文,國立台灣大學化學工程研究所(1994).
陳政澤”流體化床結晶反應槽回收廢水重金屬鎘研究”,碩士論文,國立中央大學環境工程研究所.(1995).
陳寶祺”微溶物系之沉澱與結晶”,博士論文,國立台灣大學化學工程研究所(1992).
莊和達”利用流體化床電解槽處理滲出水的探討”,碩士論文,國立成功大學化學工程研究所(1997).
莊慧伶”利用溶解式泡沫浮除法處理模擬廢水中的銅金屬離子”,碩士論文,國立清華大學化學研究所(1999).
蔡月珠”流體化床結晶技術在含鎳廢水處理的應用”,碩士論文,長庚大學化工與材料工程研究所(2000).
錢建嵩”流體化床技術”,高立圖書有限公司,81年9月.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top