(3.239.56.184) 您好!臺灣時間:2021/05/13 12:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:傅煥鈞
研究生(外文):Fu, Huan-Chun
論文名稱:可調式摻鉺光纖光柵雷射之研製
論文名稱(外文):The research and production of tunable erbium-doped fiber Bragg graing laser
指導教授:呂伯強
學位類別:碩士
校院名稱:長庚大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:89
語文別:中文
論文頁數:53
中文關鍵詞:摻鉺光纖光纖光柵
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文藉由980nm雷射二極體光源及分別以無足型(Gaussian-apodized)光纖光柵與以超結構型(Superstructure)光纖光柵在摻鉺光纖兩端所形成的兩種光諧振腔來組成兩種可調式摻鉺光纖光柵雷射。本文針對均勻型光纖光柵及超結構型光纖光柵,以電腦模擬出兩者之反射光譜,並將該兩反射光譜之各自峰值波長視為分別具有以無足型光纖光柵及以超結構型光纖光柵所形成諧振腔之二雷射的輸出光波長。此外,並針對兩雷射的輸出光波長,模擬出該二光波長相對於應變之靈敏度,分別為1.2 與0.80 。實際所研製出之無足型光纖光柵雷射,其雷射光波長為1537.80nm,譜線寬為0.1nm,功率約為0.1mW,波長隨應變變動之可調諧範圍為0.9nm,及波長相對於應變之靈敏度為0.715 。至於所研製之超結構型光纖光柵雷射,其諧振腔是由具有兩個峰值反射波長之超結構光纖光柵在摻鉺光纖兩端所形成,該雷射可同時產生兩種不同波長的雷射光,波長分別為1550.840nm及1552.360nm,譜線寬均約為0.06nm,總功率約為0.63mW。此二雷射光波長隨應變變動的可調諧範圍,因應變變動時,二不同雷射光的功率會發生彼此相等、彼此互見高低及消失的現象,以致於可調諧範圍極窄,無法藉解析度有限(0.05nm)之光頻譜分析儀所顯示的光譜來準確求得;波長相對於應變之靈敏度,亦受限於光頻譜分析儀之解析度,而無法準確求得。

The main body of this paper was with regard to the combination of two kinds of tunable erbium-doped fiber grating lasers by the 980nm laser diode light and the two kinds of optical cavities which were formed at the two sides of erbium-doped fiber separately by Gaussian-apodized and superstructure fiber grating. To focus on the uniform and superstructure fiber gratings, we used computer to simulate their reflection spectrums and regard the peak-wavelengths of these two reflection spectrums as two lasers' output wavelengths which separately have the optical cavity formed by Gaussian-apodized and superstructure fiber grating. Besides, focusing on the two lasers' output wavelengths, we also simulated the relative strain sensitivity of these two wavelengths and they were separately 1.2 and 0.8 . In facts, the apodized fiber grating laser have output wavelength was 1537.80, the linewidth was 0.1nm, the power was about 0.1mW, the wavelength tunable range according to strain was 0.9nm and the relative wavelength-strain sensitivity was 0.715 . As for the produced superstructure fiber grating laser, its optical cavity was formed by the superstructure fiber grating which has two peak-reflecting-wavelengths at the two sides of erbium-doped fiber. This laser can produce two beams of laser which have different wavelengths at the same time and the wavelengths were 1550.840nm and 1552.360nm, the linewidthes were both 0.06nm, and the total power was about 0.63mW.

1.前言……………………………………………………………1
1.1.概述……………………………………………………………1
1.2.研究動機………………………………………………………3
1.3.論文架構………………………………………………………4
2.摻鉺光纖光柵雷射原理………………………………………5
2.1.原理……………………………………………………………5
2.2.摻鉺光纖………………………………………………………5
2.3.光纖光柵式諧振腔……………………………………………7
2.3.1 均勻型光纖光柵………………………………………………8
2.3.2 非均勻型光纖光柵─超結構型光纖光柵……………………11
2.3.3 光纖光柵之應變靈敏度………………………………………19
3.實驗成果………………………………………………………21
3.1.簡介……………………………………………………………21
3.2.實驗架設………………………………………………………21
3.3.實驗方法及結果討論…………………………………………23
3.3.1 驅動及溫控電路………………………………………………23
3.3.2 980nm Pumping Laser………………………………………26
3.3.3 摻鉺光纖之ASE………………………………………………27
3.3.4 光纖光柵反射頻譜……………………………………………29
3.3.5 光纖光柵雷射…………………………………………………34
3.3.5.1 無足型光纖光柵雷射…………………………………………34
3.3.5.2 超結構型光纖光柵雷射………………………………………39
4.結論與建議……………………………………………………47
4.1 結論……………………………………………………………47
4.2 建議……………………………………………………………48
參考文獻…………………………………………………………………49
附錄A………………………………………………………………………51
附錄B………………………………………………………………………53
[1]C. E. Zah et al., “Wavelength Accuracy and Output Power of Multiwavelength DFB Lasers with Integrated Star Couplers and Optical Amplifiers,” IEEE PTL, vol. 8, pp. 864-866, 1996.
[2]M. Zirngibl et al., “Digitally Tunable Laser based on the Integration of a Waveguide Grating Multiplexer and an Optical Amplifier,” IEEE PTL, vol. 6, pp. 516-517, 1994.
[3]S. B. Poole, D. N. Payne, M. E. Fermann, “Fabrication of low loss optical fiber containing rare-earth ions,” Election. Lett., vol. 21, pp. 737, 1985.
[4]R. J. Meters, L. Reekie, I. M. Jauncey, and D. N. Payne, “High gain rare-earth doped fiber amplifier operating at 1.55μm,” Proc. OFC, Reno, NV, 1987.
[5]Li, T. Y. “The impact of optical amplifiers on long-distance lightwave telecommunications,” Proc. IEEE, 81, pp. 1568-1579, 1993.
[6]K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett., vol. 32, pp. 647-649, 1978.
[7]B. S. Kawasaki, K. O. Hill, D. C. Johnson, and Y. Fujii, “Narrow-band Bragg reflectors in optical fibers,” Opt. Lett., vol. 3, pp. 66-68, 1978.
[8]B. J. Eggleton, P. A. Krug, L. Poladian and F. Ouellette, “Long Periodic Superstructure Bragg Gratings in Optical Fibers,” Electronics Letters, vol. 30, no. 19, pp. 1620-1622, 1994.
[9]Y. Tohmori et al., “Over 100nm Wavelength Tuning in Superstructure Grating (SSG) DBR lasers,” Elect. Lett., vol. 29, pp. 352-353, 1993.
[10]Lam, D. K., and B. K. Garside, “Characterization of single-mode optical fiber filters,” Applied Optics, vol. 20, 00. 440-445, 1981.
[11]Makoto Yamada and Kyohei Sakuda, “Analysis of almost periodic distributed feedback slab waveguide via a fundamental matrix approach,” Appl. Opt., vol. 26, pp. 3474-3478, 1987.
[12]Turan Redogan, Member, IEEE, “Fiber Grating Spectra,” Journal of Lightwave Technology, vol. 15, no.8, pp. 1277-1294, August 1997.
[13]Meltz, G., and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” International Workshop on Photoinduced Self-Organization Effects in Optical Fiber, Quebec City, Quebec May 10-11, Proceedings SPIE, vol. 1516, pp. 185-199, 1991.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔