(3.238.173.209) 您好!臺灣時間:2021/05/12 13:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱永彰
研究生(外文):CHIU YUNG CHANG
論文名稱:以FPGA為基礎之IGBT功率元件測試器設計
論文名稱(外文):The Design of IGBT Tester Based on FPGA
指導教授:郭見隆郭見隆引用關係
指導教授(外文):Jian-Long Kuo
學位類別:碩士
校院名稱:長庚大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:高功率開關元件光纖驅動級脈波寬度調變電磁干擾現場可規劃化邏輯陣列
相關次數:
  • 被引用被引用:1
  • 點閱點閱:257
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電力電子技術結合了微電子技術與電力工程技術,在高頻化、全控化的需求下,新型功率積體元件焉而產生。有別於傳統的矽控閘流體的電力電子元件,如快速矽控閘流體、逆導矽控閘流體、雙向閘流體、不對稱矽控閘流體等等。新的高功率元件如功率型場效電晶體、絕緣閘極電晶體或絕緣閘極雙極電晶體等等,正被大量應用於工業,尤其以絕緣閘極雙極電晶體為最。大功率元件性能上的優劣,會成為電力品質的關鍵,亦會成為產品特性的關鍵。若能設計出測試絕緣閘極雙極電晶體的測試器,對於電力電子的實務應用有極大的幫助。另一方面,光纖運用在大功率應用場合時,功率模組尺寸隨著容量而增加,由控制器輸出之脈波寬度調變信號常常因為元件模組幾何尺寸增大而需要傳輸一段距離,通常無法使距離儘量拉近,甚至趨近於零。一般而言,大功率驅動電路常常因為大電壓、大電流之情形下,切換造成不小的dV/dt、dI/dt,容易造成嚴重的電磁干擾。尤其在傳輸距離增長時,且傳輸速率提高之下,採行光纖化是為了有效避免電磁干擾問題。控制絕緣閘極雙極電晶體切換的可規劃驅動波形是以現場可規劃化邏輯陣列實現的數位電路以取代傳統TTL的電路或類比電路,此舉以節省絕緣閘極雙極電晶體測試器電路的空間,及避免類比電路的不穩定性。整體而言,為了提昇高功率驅動性能,以下以測試大功率元件測試器來作為主軸,利用高頻可規劃驅動波形輸至絕緣閘極雙極電晶體做切換動作,探討絕緣閘極雙極電晶體之特性。以現場可規劃化邏輯陣列實現之可規劃驅動波形信號級與類比電路之便利性與穩定性之比較,探討整體電路的設計方向。進一步運用光纖化與否以了解絕緣閘極雙極電晶體的高頻響應表現的差別。測試器之所以需要做可規劃驅動波形,是因為成本上的考量。若能調整測試器動作時之充電、放電時間,則測試器中穩定電壓用的電容、充電電感、及待測的開關元件之負荷皆能降低。因此測試器中最貴的元件價格能即能夠有效降低,整體測試器的價格可因波形規劃改變降低約4倍的價格,這即是此測試器花費多時做脈波寬度調變波形規劃的最重要目的。本論文基於上述之需求考量,將提供可行之設計法則,並實際測試,以驗證設計理論及測試器功能。

Modern power electronic technology is a combination of microelectronics technology and power electronics technology. Different from traditional power electronics elements, new high-power elements such as Power MOSFET, IGT, IGBT are currently being greatly utilized in industries, especially IGBT. The advantage and disadvantage of high-power elements become the crucial points of electrical power quality. Thus, if IGBT tester can be designed, then it shall greatly facilitate power electronics practice. On the other hand, PWM signal which is an input often requires a greater transmitting distance hence the size of tester increases. In the circumstance of high-power driving, electrical current and electrical voltage, which result in a number of dV/dt and dI/dt, easily cause EMI. It is important that optical fiber is being utilized against EMI. In order for electric circuit to be more space conserving and to avoid instability, it is better to use FPGA to generate PWM signals than traditional analog systems. Hence, this thesis shall discuss the FPGA method which produces PWM signals to drive IGBT tester.

目錄
第一章 FPGA BASED IGBT測試器概論………… ………………10
1-1 研究背景……………………...…………………………………10
1-2 研究目的……………………………………………..………….13
1-3 研究方法及進行步驟………………………………..………….15
第二章 IGBT測試器設計原理………………..……………………17
2-1 前言……………………………………………………………...17
2-2 新型元件IGBT的動作原理……………………………………18
2-3 脈波寬度調變型變流器之原理………………………………...21
2-3-1 變流器之原理…………………………………………...……..21
2-3-2 脈波寬度調變技術之原理……………………………...……..27
2-4 IGBT測試器之原理…………………………………………….29
2-5 研究方法及進行步驟…………………………………………...31
第三章 FPGA BASED IGBT測試器之電路設計……...…………..32
3-1 概論……………………………………………………………...32
3-2 負載級之設計…………………………………………………...33
3-3 驅動級之設計…………………………………………………...36
3-3-1 傳統訊號線………………………………………………...…..37
3-3-2 光纖驅動極…………………………………………………….39
3-4 訊號級(可規劃驅動波形)設計……………………………..…..41
3-4-1 類比式訊號級(可規劃驅動波形)設計………………………...42
3-4-2 數位式訊號級(可規劃驅動波形)設計……………………...…46
3-4-3 即時顯示電路………………………………………………….48
3-4-4 除頻電路………………………………...……………………..55
3-4-5 功率元件測試專用波形產生電路…………………...………..58
第四章 IGBT元件之特性探討…………………………………..…66
4-1 以IsSpice模擬之IGBT特性……………………………………66
4-1-1 單橋式電路動態模擬………………………………………….66
4-2 數位式電路測試結果……………………………..…………….69
4-2-1 傳統訊號線方式……………………………………..………...69
4-2-2 光纖驅動級方式………………………………………………70
4-3 類比式與數位式及光纖運用比較探討…………….…………..71
第五章 研究成果與展望……………………………………………74
5-1 研究成果……………………………….………………………..74
5-2 電力電子未來展望……………………………………………...76
參考文獻………………………………………………………………..78
附錄……………………………………………………………………..82
附錄一…………………………………………………………………..82
附錄二…………………………………………………………………..83
附錄三…………………………………………………………………..84
圖表目錄
表一 七段顯示器顯示電路部分程式………………………..……53
表二 四組七段顯示器顯示電路程式………………….....……….54
表三 上數計數器之VHDL程式…………………………………..56
第一章 FPGA BASED IGBT測試器概論………… ………..…..…10
圖1 測試器之可規劃驅動波形………………………………..…16
第二章 IGBT測試器設計原理…………………..…………………17
圖2-1 N―絕緣閘極雙極電晶體等效電路…………...…..…..…..21
圖2-2 電阻性負載之單相半橋逆變電路…………………………..23
圖2-3 電阻電感性負載之單相全橋逆變電路…..…………………25
第三章 FPGA BASED IGBT測試器之電路設計……………..…...32
圖3-1 IGBT測試器主電路圖………………………………………34
圖3-2 負載級電路正極板實際照片………………………………..35
圖3-3 負載級電路負極板實際照片………………………………..35
圖3-4 驅動級電路圖………………………………………………..38
圖3-5 TLP250接腳圖電路圖………………………………………38
圖3-6 類比式可規劃驅動波形示意圖……………………………..42
圖3-7 類比訊號級之電路圖………………………………………..43
圖3-8 數位式訊號級示意圖………………………………………..49
圖3-9 VHDL 程式架構圖………………………………………….51
圖3-10 顯示電路邏輯示意圖………………………………………..52
圖3-11 計數器示意圖……..……………………………...………….55
圖3-12 雙頻架構示意圖…..…………………………………………57
圖3-13 可規劃驅動波形產生流程…………………………………..59
圖3-14 可規劃驅動波形產生流程訊號說明圖……………………..60
圖3-15 可規劃驅動波形產生電路………………………….……….62
圖3-16 可規劃驅動波形產生電路示意圖………………………..…63
圖3-17 閘極控制訊號產生電路有限狀態機示意圖………..…...….64
第四章 IGBT元件之特性探討…..…………………………………66
圖4-1 單橋式動態模擬電路圖……………………………………..67
圖4-2 以IsSpice模擬之測試器切換波形圖…………………….….68
圖4-3 金屬絞線傳輸架構之數位可規劃驅動波形驅動切換之VG、VCE、Ic波形圖……………………...……………………..…70
圖4-4 光纖傳輸架構之數位可規劃驅動波形驅動切換之VG、VCE、Ic波形圖……………………………………...………..71
圖4-5 光纖傳輸架構之數位可規劃驅動波形驅動切換之VG、VCE、Ic(reset)波形圖……………………………………..….73

[1]Y. Onishi, S. Momota, Y. Kondo, M. Otsuki, N. Kumagai and
K. Sakurai, “Analysis on Device structures for Next generation
IGBT,” International Symposium on Power Semiconductor
Devices & ICs, Kyoto, 1998, pp. 85-88.
[2]Allen R. Hefner, Jr., “ A Dynamic Electro-Thermal Model for the IGBT,” Industry Applications , IEEE Transaction on Vol. 30, March-April 1994, pp. 394-405.
[3]David W. Berning and Allen R. Hefner, Jr., “IGBT Model Validation for Soft-Switching Applications,” Industry Applications Conference, 1999. Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE vol.1, 1999, pp.683-691
[4]C. Winterhalter, H.-R. Chang, R.N. Gupta, “Optimized 1200V Silicon Trench IGBTs with Silicon Carbide Schottky Diodes,” Industry Applications Conference, 2000. Conference Record of the 2000 IEEE vol.5, Oct. 2000, pp. 2928-2933.
[5]Byeong-Mun Song, Huibin Zhu, Jih-Sheng Lai and A.R. Hefner, Jr., “Switching characteristics of NPT- and PT-IGBTs under zero-voltage switching conditions,” Industry Applications Conference, 1999. Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE vol.1, Oct. 1999, pp.: 722 - 728.
[6]H.A. Mantooth and A.R. Hefner, Jr., “Electrothermal simulation of an IGBT PWM inverter,” Power Electronics, IEEE Transactions on Vol. 12, May 1997, pp. 474 — 484.
[7]T. Laska, F. Pfirsch, F. Hirler, J. Niedermeyr, C. Schaffer and T. Schmidt, ”1200 V-trench-IGBT study with square short circuit SOA,” Power Semiconductor Devices and ICs, 1998. ISPSD 98. Proceedings of the 10th International Symposium on, June 1998, pp. 433 - 436.
[8]Bor-Ren Lin and Hsin-Hung Lu, “Implementation of nondeterministic PWM for inverter drives,” Industrial Electronics, 1999. ISIE '99. Proceedings of the IEEE International Symposium on vol.2, July 1999, pp. 813 - 818.
[9]A. Maamoun and M.M. Ahmed, ”Microprocessor control system for PWM IGBT inverter feeding three-phase induction motor,” Industrial Electronics, Control, and Instrumentation, 1995., Proceedings of the 1995 IEEE IECON 21st International Conference on vol.2, Nov. 1995, pp. 1354 - 1359.
[10]Z. Yu, A. Mohammed and I. Panahi, “A review of three PWM techniques,” American Control Conference, 1997. Proceedings of the 1997 vol.1, June 1997, pp. 257 - 261.
[11]Soon H. Kwon, Ick Choy, K.H. Kim and H.S. Mok, ”A new direct digital PWM technique for microprocessor-based PWM inverters,”
Power Electronics Specialists Conference, 1996. PESC '96 Record., 27th Annual IEEE vol. 2, June 1996 , pp. 1300 - 1304.
[12]R. Vemuri and R. Kalyanaraman, “Generation of design verification tests from behavioral VHDL programs using path enumeration and constraint programming,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on vol.3, June 1995, pp. 201 - 214.
[13]M. Chang, “Teaching top-down design using VHDL and CPLD,” Frontiers in Education Conference, 1996. FIE '96. 26th Annual Conference., Proceedings of vol.2, Nov. 1996, pp. 514 - 517.
[14]S. Olcoz, L. Entrena and L. Berrojo, ”An effective system development environment based on VHDL prototyping,” Design Automation Conference, 1995, with EURO-VHDL, Proceedings EURO-DAC '95., European, 1995, pp. 502 - 507.
[15]T. Karnik, D.G. Saab, S.M. Kang, Y.K. Lee and K.H. Kim, ” Hierarchical mixed-level simulation of VHDL descriptions,”
ASIC Conference and Exhibit, Sept. 1994. Proceedings., Seventh Annual IEEE International, 1994, pp. 170 - 173.
[16]D. Lungeanu and C.J.R. Shi, ”Parallel and distributed VHDL simulation,” Design, Automation and Test in Europe Conference and Exhibition 2000. Proceedings, March 2000, pp. 658 - 662.
[17]P. Kission, Hong Ding and A.A. Jerraya, ”VHDL based design methodology for hierarchy and component re-use,” Design Automation Conference, 1995, with EURO-VHDL, Proceedings EURO-DAC '95., European , Sept. 1995, pp. 470 - 475.
[18]Konrong Wang, F.C. Lee, Guichao Hua and D. Borojevic, ”A comparative study of switching losses of IGBTs under hard-switching, zero-voltage-switching and zero-current-switching,” Power Electronics Specialists Conference, PESC '94 Record., 25th Annual IEEE vol. 2, June 1994, pp. 1196 -1204.
[19]F. Mihalic, K. Jezernik, K. Krischan and M. Rentmeister, ”IGBT SPICE model,” Industrial Electronics, IEEE Transactions on vol. 42, Feb 1995, pp. 98 - 105.
[20]Von Herzen, B., ”Signal processing at 250 MHz using high-performance FPGA's,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on vol. 6, June 1998, pp. 238 - 246.
[21]P. Graham and B. Nelson, ”Frequency Domain Sonar Processing in FPGAs and DSPs *,” FPGAs for Custom Computing Machines, 1998. Proceedings. IEEE Symposium on, April 1998, pp. 306 - 307.
[22]Y. Sasaki, ”Optical Fiber Devices,” Transparent Optical Networks, 2000 2nd International Conference on, June 2000, pp. 9 - 12.
[23]Jin Hyeon Chang, Byung Goo Jeon, Jae Kwang Kang, Jin Ho Jung and Yung Kwon Kim, ”Characteristics of optical fiber WDM with high isolation,” TENCON 99. Proceedings of the IEEE Region 10 Conference on vol.1, Sept. 1999, pp. 43 - 44.
[24]H. Asada, H. Ikeda, H. Yoshida, Sheng Senzhi and Duan Minghao, ”Optical fiber personal computer data transmission system for local area networking,” Communication Technology Proceedings, 1996. ICCT'96., 1996 International Conference on vol.2, May 1996, pp. 1084 - 1087.
[25]J. Shi, A. Randhar and D. Bhatia, ”Macro block based FPGA floorplanning,” VLSI Design, 1997. Proceedings., Tenth International Conference on , Jan 1997, pp. 21 - 26.
[26]M.-R. Dabdoub and S.V. Wunnava, ”VHDL: a powerful digital design and simulation tool,” Southeastcon '96. Bringing Together Education, Science and Technology., Proceedings of the IEEE, April 1996, pp. 537 - 540.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔