(3.238.99.243) 您好!臺灣時間:2021/05/15 19:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃宏明
研究生(外文):Hung-Ming Huang
論文名稱:蛋白質精胺酸甲基接受蛋白之研究---重組fibrillarin之甲基化分析及淋巴母細胞甲基接受蛋白之蛋白體分析
論文名稱(外文):Studies of arginine methylaccepting proteins:the methylation analysis of recombinant fibrillarin and proteomic analysis of methylacception proteins in lymphoblastoid cells
指導教授:李娟李娟引用關係
學位類別:碩士
校院名稱:中山醫學院
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:蛋白質精胺酸甲基轉移脢二維性電泳分析蛋白體分析
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蛋白質精胺酸的甲基化,常見於一些RNA結合蛋白,且是發生於arginine-glycine-glycine (RGG)重複的序列中,如fibrillarin。在之前的研究中,雖已證實fibrillarin確為精胺酸甲基接受蛋白,但對於其發生甲基化的機制與特性,卻仍是不清楚的。在我們的實驗中,利用重組的fibrillarin,進行in vitro甲基化反應,配合蛋白內切脢與fluorography的結果,針對fibrillarin發生於其RGG domain中的精胺酸甲基化現象,作了進一步的探討。
另外,在之前的研究,已知淋巴母細胞中富含精胺酸甲基接受蛋白,為了更進一步研究這些蛋白,在我們的實驗中,利用了蛋白體 (Proteomic)分析的技術,使用了二維膠電泳 (2-dimensional gel electrophoresis)及MALDI-TOF-MS的分析,對這些蛋白作了進一步的鑑定。我們配合使用甲基轉移脢抑制劑AdOx,獲取低甲基化狀態的萃取蛋白,方便進行in vitro甲基化分析。將淋巴母細胞培養在加入或不加入AdOx的環境中,取得的萃取蛋白在跑完2D gel後,以分析軟體進行比對,但未見彼此間有顯著的差異性。而在以+AdOx的淋巴母細胞萃取蛋白,利用重組之酵母菌甲基轉移脢RMT1進行完in vitro甲基化反應,以2D gel進行分析後,根據fluorography的結果,取有甲基化反應的蛋白spots,使用蛋白內切脢作in gel digestion,再將產物進行MALDI-TOF-MS的分析。之後以線上軟體,至資料庫中鑑定這些蛋白。但其中的Protein disulfide isomerase (PDI)在後續的研究中,無法進一步確認有精胺酸甲基化的反應,而另外二點鑑定出的hnRNP A2/B1,則是和過去已知的甲基化研究相符合。最後,我們並以mass分析的資料,對hnRNP A2/B1發生甲基化的位置,提供了初步的證據。這或許正指引了進一步探討蛋白質甲基化的研究方向。

中文摘要.........1
英文摘要.........3
序論.............5
材料與方法......13
結果............31
討論............42
參考文獻........49
圖表............56

Abramovich C., Yakobson B., Chebath J., and Revel M. (1997) A protein-arginine methyltransferase binds to the intracytoplasmic domain of the IFNAR1 chain in the type 1 interferon receptor. EMBO J. 16, 260-266
Barneche F., Steinmetz F., and Echeverria M. (2000) Fibrillarin Genes Encode Both a Conserved Nucleolar Protein and a Novel Small Nucleolar RNA Involved in Ribosomal RNA Methylation in Arabidopsis thaliana. J. Biol. Chem. 275, 27212-27220
Birney E., Kumar S., and Krainer A. R. (1993) Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res. 21, 5803-5816
Chen D., Ma H., Hong H., Koh S. S., Huang S. M., Schurter B. T., Aswad D. W., and Stallcup M. R. (1999) Regulation of Transcription by a Protein Methyltransferase. Science 284, 2174-2177
Chen H. K., Pai C. Y., Huang J. Y., and Yeh N. H. (1999) Human Nopp140, Which Interacts with RNA Polymerase I: Implications for rRNA Gene Transcription and Nucleolar Structural Organization. Mol. Cell. Biol. 19, 8536-8546
Dreyfuss G., Matunis M. J., Serafin Pinol-Roma, and Burd C. G. (1993) hnRNP Proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62, 289-321
Frankel A. and Clarke S. (1999) RNase Treatment of Yeast and Mammalian Cell Extracts Affects in Vitro Substrate Methylation by Type I Protein Arginine N-Methyltransferases. Bioch. and Biophy. Res. Comm. 259, 391-400
Gary J. D., Lin W. J., Yang M. C., Herschman H. R., and Clarke S. (1996) The Predominant Protein-arginine Methyltransferase from Saccharomyces cerevisiae. J. Biol. Chem. 271, 12585-12594
Ghosh S., Ghosh R., Das P., and Chattopadhyay D. (2001) Expression and Purification of Recombinant Giardia Fibrillarin and Its Interaction with Small Nuclear RNAs. Protein Exp. And Purif. 21, 40-48
Ghosh S. K., Paik W. K., and Kim S. (1988) Purification and Molecular Identification of Two Protein Methylases I from Calf Brain. J. Biol. Chem. 263, 19024-19033
Henry M. F., and Silver P. A. (1996) A Novel Methyltransferase (Hmt1p) Modifies Poly(A)+-RNA-Binding Proteins. Mol. Cell. Biol. 16, 3668-3678
Hyun Y. L., Lew D. B., Park S. H., Kim C. W., Paik W. K., and Kim S. (2000) Enzymic methylation of arginyl residues in —Gly-Arg-Gly- peptides. Biochem. J. 348, 573-578
Inoue K., Mizuno T., Wada K., and Hagiwara M. (2000) Novel RING Finger Proteins, Air1p and Air2p, Interact with Hmt1p and Inhibit the Arginine Methylation of Np13p. J. Biol. Chem. 275, 32793-32799
Joubert-Caron R., Caer J. P. L., Montandon F., Poirier F., Pontet M., Imam N., Feuillard J., Blandier D., Rossier J., and Caron M. (2000) Protein analysis by mass spectrometry and sequence database searching: A proteomic approach to identify human lymphoblastoid cell line proteins. Electrophoresis 21, 2566-2575
Kim S., Merrill B. M., Rajpurohit R., Kumar A., Stone K. L., Papov V. V., Schneiders J. M., Szer W., Wilson S. H., Paik W. K., and Williams K. R. (1997) Identification of NG-Methylarginine Residues in Human Heterogeneous RNP Protein A1: Phe/Gly-Gly-Gly-Arg-Gly-Gly- Gly/Phe Is a Preferred Recognition Motif. Biochemistry 36, 5185-5192
Koh S. S., Chen D., Lee Y. H, and Stallcup M. R. (2001) Synergistic Enhancement of Nuclear Receptor Function by p160 Coactivators and Two Coactivators with Protein Methyltransferase Activities. J. Biol. Chem. 276, 1089-1098
Lee M. S., Henry M., and Silver P. A. (1996) A protein that shuttles between the nucleus and the cytoplasm is an important mediator of RNA export. Genes and Dev. 10, 1233-1246
Li C., Ai L. S., Lin C. H., Hsieh M. L., Li Y. C., and Li S. Y. (1998) Protein N-Arginine Methylation in Adenosine Dialdehyde-Treated Lymphoblastoid Cells. Arch. of Bioch. and Biophy. 351, 53-59
Lin C. H., Hsieh M. L., Li Y. C., Li S. Y., Pearson D. L., Pollard K. M., and Li C. (2000) Protein N-Arginine Methylation in Subcellular Fractions of Lymphoblastoid Cells. J. Biochem. 128, 493-498
Lin W. J., Gary J. D., Yang M. C., Clarke S., and Herschman H. R. (1996) The Mammalian Immediate-early TIS21 Protein and the Leukemia-associated BTG1 Protein Interact with a Protein-arginine N-Methyltransferase. J. Biol. Chem. 271, 15034-15044
Lischwe M. A., Cook R. G., Ahn Y. S., Yeoman L. C., and Busch H. (1985) Clustering of Glycine and NG,NG-Dimethylarginine in Nucleolar Protein C23. Biochemistry 24, 6025-6028
Liu Q. and Dreyfuss G. (1995) In Vivo and In Vitro Arginine Methylation of RNA-Binding Proteins. Mol. Cell. Biol. 15, 2800-2808
Lozano M. J. F., Remsing L. L., Quiros L. M., Brana A. F., Fernandez E., Sanchez C., Mendez C., Rohr J., and Salas J. A. (2000) Characterization of Two Polyketide Methyltransferases Involved in the Biosynthesis of the Antitumor Drug Mithramycin by Streptomyces argillaceus. J. Biol. Chem. 275, 3065-3074
Matter N., Marx M., Weg-Remers S., Ponta H., Herrlich P., and Konig H. (2000) Heterogeneous Ribonucleoprotein A1 Is Part of an Exon-specific Splice-silencing Complex Controlled by Oncogenic Signaling Pathways. J. Biol. Chem. 275, 35353-35360
McDonald W. H. and John R. Y. (2000) Proteomic Tools for Cell Biology. Traffic 1, 747-754
Mowen K. A., Tang J., Zhu W., Schurter B. T., Shuai K., Herschman H. R., and David M. (2001) Arginine Methylation of STAT1 Modulates IFNα/β-Induced Transcription. Cell 104, 731-741
Najbauer J. and Aswad D. W. (1990) Diversity of Methyl Acceptor Proteins in Rat Pheochromocytoma (PC12) Cells Revealed after Treatment with Adenosine Dialdehyde. J. Biol. Chem. 265, 12717-12721
Najbauer J., Johnson B. A., and Aswad D. W. (1991) Amplification and Detection of Substrates for Protein Carboxyl Methyltransferases in PC12 Cells. Anal. Biochem. 197, 412-420
Najbauer J., Johnson B. A., Young A. L., and Aswad D. W. (1993) Peptides with Sequences Similar to Glycine, Arginine-rich Motifs in Proteins Interacting with RNA Are Efficiently Recognized by Methyltransferase(s) Modifying Arginine in Numerous Proteins. J. Biol. Chem. 268, 10501-10509
Nichols R. C., Wang X. W., Tang J., Hamilton B. J., High F. A., Herschman H. R., and Rigby W. F. C. (2000) The RGG Domain in hnRNP A2 Affects Subcellular Localization. Exp. Cell Res. 256, 522-532
Pawlak M. R., Scherer C. A., Chen S. J., Roshon M. J., and Ruley H. E. (2000) Arginine N-Methyltransferase 1 Is Required for Early Postimplantation Mouse Development, but Cells Deficient in the Enzyme Are Viable. Mol. Cell. Biol. 20, 4859-4869
Pritzker L. B., Joshi S., Harauz G., and Moscarello M. A. (2000) Deimination of Myelin Basic Protein. 2. Effect of Methylation of MBP on Its Deimination by Peptidylarginine Deiminase. Biochemistry 39, 5382-5388
Rajpurohit R., Lee S. O., Park J. O., Paik W. K., and Kim S. (1994) Enzymatic Methylation of Recombinant Heterogeneous Nuclear RNP Protein A1. J. Biol. Chem. 269, 1075-1082
Rajpurohit R., Paik W. K., and Kim S. (1994) Effect of enzymic methylation of heterogeneous ribonucleoprotein particle A1 on its nucleic-acid binding and controlled proteolysis. Biochem. J. 304, 903-909
Scorilas A., Black M. H., Talieri M., and Diamandis E. P. (2000) Genomic Organization, Physical Mapping, and Expression Analysis of the Human Protein Arginine Methyltransferase 1 Gene. Bioch. and Biophy. Res. Comm. 278, 349-359
Shen E. C., Henry M. F., Weiss V. H., Valentini S. R., Silver P. A., and Lee M. S. (1998) Arginine methylation facilitates the nuclear export of hnRNP proteins. Genes and Dev. 12, 679-691
Smith J. J., Rucknagel K. P., Schierhorn A., Tang J., Nemeth A., Linder M., Herschman H. R., and Wahle E. (1999) Unusual Sites of Arginine Methylation in Poly(A)-binding Protein II and in vitro Methylation by Protein Arginine Methyltransferases PRMT1 and PRMT3. J. Biol. Chem. 274, 13229-13234
Snaar S., Wiesmeijer K., Jochemsen A. G., Tanke H. J., Dirks R. W. (2000) Mutational Analysis of Fibrillarin and Its Mobility in Living Human Cells. J. Cell Biol. 151, 653-662
Tang J., Frankel A., Cook R. J., Kim S., Paik W. K., Williams K. R., Clarke S., and Herschman H. R. (2000) PRMT1 Is the Predominant Type I Protein Arginine Methyltransferase in Mammalian Cells. J. Biol. Chem. 275, 7723-7730
Tang J., Gary J. D., Clarke S., and Herschman H. R. (1998) PRMT3, a Type I Protein Arginine N-Methyltransferase That Differs from PRMT1 in Its Oligomerization, Subcellular Localization, Substrate Specificity, and Regulation. J. Biol. Chem. 27, 16935-16945
Tang J., Kao P. N., Herschman H. R. (2000) Protein-arginine Methyltransferase I, the Predominant Protein-arginine Methyltransferase in Cells, Interacts with and Is Regulated by Interleukin Enhancer-binding Factor 3. J. Biol. Chem. 275, 19866-19876
Tockman M. S., Erozan Y. S., Gupta P., Piantadosi S., Mulshine J. L., and Ruckdeschel J. C. (1994) The early detection of second primary lung cancers by sputum immunostaining. Chest 106 (6 Suppl), 385S-390S
Tollervey D., Lehtonen H., Jansen R., Kern H., and Hurt E. C. (1993) Cell 72,443-457.
Turley S. J., Tan E. M., and Pollard K. M. (1993) Molecular cloning and sequence analysis of U3 snoRNA-associated mouse fibrillarin. Bioch.. et Bioph.. Acta. 1216, 119-122
Valentini S. R., Weiss V. H., and Silver P. A. (1999) Arginine methylation and binding of Hrp1p to the efficiency element for mRNA 3’-end formation. RNA 5, 272-280
Weiss V. H., McBride A. E., Soriano M. A., Filman D. J., Silver P. A., and James M. H. (2000) The structure and oligomerization of the yeast arginine methyltransferase, Hmt1. Nature Structural Biology 7, 1165-1171
Wilson S. M., Datar K. V., Paddy M. R., Swedlow J. R., and Swanson M. S. (1994) Characterization of Nuclear Polyadenylated RNA-binding Proteins in Saccharomyces cerevisiae. J. Cell Biol. 127, 1173-1184
Yun C. Y. and Fu X. D. (2000) Conserved SR Protein Kinase Functions in Nuclear Import and Its Action Is Counteracted by Arginine Methylation in Saccharomyces cerevisiae. J. Cell Biol. 150, 707-717
Zhang X., Zhou L., and Cheng X. (2000) Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. EMBO J. 19, 3509-3519
Zobel-Thropp P., Gary J. D., Clarke S. (1998) δ-N-Methylarginine Is a Novel Posttranslational Modification of Arginine Residues in Yeast Proteins. J. Biol. Chem. 273, 29283-29286

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top