(3.236.122.9) 您好!臺灣時間:2021/05/14 06:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳東岳
研究生(外文):Tong-Yue Wu
論文名稱:時間不連續葛勒金有限元素法於彈性動力學問題之研究
論文名稱(外文):A Study on Time-Discontinuous Galerkin Finite Element Method for Elastodynamic Problems
指導教授:簡秋記簡秋記引用關係
指導教授(外文):Chyou-Chi Chien
學位類別:博士
校院名稱:中原大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:139
中文關鍵詞:時間不連續葛勒金法無網格法有限元素法無網格局部彼得洛夫葛勒金法彈性動力特解邊界元素法雙重互換邊界元素法
外文關鍵詞:particular integral boundary element methodmeshless local Petrov-Galerkin approach.finite element methodtime-discontinuous Galerkin methodelastodynamicsmeshless methoddual reciprocity boundary element method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要目的在於以時間不連續葛勒金有限元素法(簡稱TDG法),分別配合空間域之有限元素法、邊界元素法與無網格法分析結構或彈性動力問題。首先,本文採用位移與速度雙場混合形式的TDG法,每個時階內的位移與速度皆以一階線性時域元素離散,並允許其在每個時階初的離散點上不連續,且具有三階的收斂率。為了降低TDG法每個時階所需的運算量,本文根據廣義迭代法的理論設計出無條件收斂穩定的區塊迭代演算方式,經理論的證明及數值執行結果顯示每個時階的計算成本可大幅降低。第二,本文將TDG法搭配有限元素法分析彈性動力問題,並分別與常用的直接積分法:HHT-a法、Park法與Houbolt法,做一數值上之比較。本文數值算例顯示,TDG法無論對假高頻反應的取捨或是精確度皆遠優於上述三者。第三,本文將TDG法搭配邊界元素法分析彈性動力問題。其中,邊界元素法乃基於雙重互換邊界元素法(簡稱DRBEM)或特解邊界元素法(簡稱PIBEM),此法使用近似特解的觀念將慣性域內積分項轉換至邊界,因此僅涉及彈性靜力之位移和曳引力基本解,不需用到一般較繁雜之彈性動力時間域或頻率域基本解。由於DRBEM或PIBEM所形成的矩陣不具帶寬且非對稱,因此在較高振態時易有複數振態或頻率產生,這些複數振態極易導致動力反應分析時的數值不穩定﹔因此,具有L-stable的Houbolt法通常被視為有較穩定的數值結果,然而Houbolt法具有嚴重的週期誤差之缺點。本文數值算例結果顯示,TDG法的穩定性、精確度與對假高頻反應的取捨皆遠優於Houbolt法。最後,本文使用無網格法分析彈性動力問題,其中,無網格法乃基於無網格局部彼得洛夫葛勒金法(簡稱MLPG法)。MLPG法係根據局部之對稱弱形式以及變動最小平方近似法,因此於物理量的近似與能量的積分,甚至必要邊界條件的引入,完全無須求助網格或有限元素之建立。由於MLPG法所形成的質量與勁度矩陣雖具帶寬但並不一定為對稱,因此動力領域的問題值得探討。除了自由震動分析之外,本文亦分別使用具L-stable的TDG法、Park法與Houbolt法以及有限元素法最常使用的Newmark法分析時域反應。本文數值算例結果顯示,MLPG法可成功地算出彈性問題之重要自然頻率,且唯有TDG法可以有效抑制時域反應之假高頻震盪現象。
The main objective of this thesis is to deal with elastodynamic problems, in which the spatial domain is modeled by finite element method, boundary element method and meshless method, respectively, and then, using the time-discontinuous Galerkin method (TDG method), analyze the dynamic responses in the time domain. First, a two-fields and mixed formulated TDG method is studied, by which both displacements and velocities are interpolated independently as piecewise linear functions in time and may be discontinuous at beginning of each time step. In order to alleviate the computational cost on each time step, a block iteration algorithm based on generalized iteration is proposed. Theoretical proof and practical numerical implementations reveal that the proposed algorithm can effectively decrease the computational cost. Secondly, the TDG together with space finite element methods are applied to elastodynamic problems. As compared with commonly used time integration methods, HHT-a, Houbolt and Park methods, numerical results demonstrate that the TDG method considered here has superior performance on accuracy and is capable of filtering out the noise of spurious high modes. Then, the TDG and dual reciprocity boundary element method (DRBEM) or particular integral boundary element method (PIBEM) methodology are used for solving elastodynamic problems. Both of DRBEM and PIBEM use the technique of approximated particular solutions to circumvent the domain integral for inertial forces. Thus, the DRBEM and PIBEM depend only on elastostatic displacement and traction fundamental solutions without resorting to commonly used complex fundamental solutions for elastodynamic problems. However, the higher complex vibrating-modes or -frequencies may easily arise from asymmetric matrices formed by the DRBEM or PIBEM. Both of Houbolt and TDG methods are employed to deal with this main drawback of the DRBEM or PIBEM. The numerical results reveal that the TDG method not only has the same stability as Houbolt method but also adequately controls the spurious high-modes. Finally, the meshless local Petrov-Galerkin (MLPG) approach is adopted to analyze the elastodynamic problems. The MLPG approach considered here is based on local symmetric weak form and moving least square approximation. This approach is a truly meshless method, as it does not need a “finite element mesh”, either for purposes of interpolation for the solution variables, or for the integration of the energy. The matrix properties of MLPG are banded but not always symmetric, thus here is a motivation to explore the dynamic problems using MLPG approach. Both of free vibration and transient dynamic responses analysis are explored via several benchmark problems. Numerical results support that MLPG approach is also able to extract the crucial frequencies and modes like finite element method. However, the spurious high-frequency oscillations could adversely affect the computed responses. Three L-stable techniques (TDG, Houbolt and Park methods) and Newmark method are surveyed. The numerical results reveal that the only TDG method provides very stable and accurate results in the sense that the crucial modes have been accurately integrated and the spurious ones successfully filtered out.
封面
中文摘要
英文摘要
誌謝
符號說明
目錄
圖目錄
第1章 緒論
1~1: 前言
1~2: 文獻回顧
1~3: 本文介紹
第2章 時間不連續葛勒金有限元素法
2~1: 前言
2~2: 時間不連續葛勒金法
2~3: 穩定性與精確度分析
2~4: 數值執行方法
2~5: 數值算例
第3章 有限元素法
3~1: 前言
3~2: 基本變分方程式
3~3: 空間有限元素離散形式
3~4: 全域角度之有限元素
3~5: 數值算例
第4章 邊界元素法
4~1: 前言
4~2: 基本邊界積分方程式
4~3: 域內積分處理與轉換
4~4: 空間邊界元素離散形式
4~5: 時間域反應
4~6: 數值算例
第5章 無網格法
5~1: 前言
5~2: 變動最小平方近似法
5~3: 無網格局部彼得洛夫葛勒金法
5~4: 數值算例
第6章 結論與建議
6~1: 結論
6~2: 建議
參考文獻R
1.Houbolt J.C., ‘A recurrence matrix solution for the dynamic response of elastic aircraft’, J. Aeronaut. Sci., 17, 540-550, 1950.2.Newmark N.M., ‘A method of computation for structural dynamics’, J. Eng. Mech. Div., ASCE, 8, 67-94, 1959.3.Cruse T.A., Rizzo F.J., ‘A direct formulation and numerical solution of the general transient elastodynamic problem-I’, J. Math. Anal. Appl., 22, 244-259, 1968.4.Cruse T.A., ‘A direct formulation and numerical solution of the general transient elastodynamic problem-II’, J. Math. Anal. Appl., 22, 341-355, 1968.5.Argyris J., Scharpf D.W., ‘Finite elements in time and space’, Nucl. Eng. Design, 10, 456-464, 1969.6.Fried I., ‘Finite element analysis of time-dependent phenomena’, AIAA J., 7, 1170-1173, 1969.7.Oden J.T., ‘A general theory of finite elements II, Applications’, Int. J. Num. Meth. Eng, 1, 247-259, 1969.8.Wilson E.L., Farhoomand I., Bathe K.J., ‘Nonlinear dynamic analysis of complex structures’, Earthquake Eng. Struct. Dyn, 1, 242-252, 1973.9.Bathe K.J., Wilson E.L., ‘Stability and accuracy analysis of direct integration methods’, Earthquake Eng. Struct. Dyn., 1, 283-291, 1973.10.Lesaint P., Raviart P.-A., ‘On a finite element method for solving the neutron transport equation’, Math. Aspects of Finite elements in Partial Differential Equations, C. de Boor (ed.), Academic Press, New York, 1974.11.Smith D. R., Smith C.V.Jr., ‘When is Hamilton’s principle an extremum principle ?’, AIAA J., 12, 1573-1576, 1974.12.Bailey C.D., ‘A new look at Hamilton’s Principle’, Foundations of Physics, 5, 433-451, 1975.13.Bailey C.D., ‘Application of Hamilton’s law of varying action’, AIAA J., 13, 1154-1157, 1975.14.Park K.C., ‘An improved stiffly stable method for direct integration of nonlinear structural dynamic equations’, J. Appl. Mech. (ASME), 42, 464-470, 1975.15.Bailey C.D., ‘The method of Ritz applied to the equation of Hamilton’, Comput. Meth. Appl. Mech. Eng., 7, 235-247, 1976.16.Gingold R.A., Moraghan J.J., ‘Smoothed particle hydrodynamics: theory and applications to non-spherical stars’, Man. Not. Astrou. Soc., 181, 375-389, 1977.17.Zienkiewicz O.C., ‘A new look at Newmark, Houbolt and other time stepping formulae. A weighted residual approach’, Earthquake Eng. Struct. Dyn., 5, 413-418, 1977.18.Hilber H.M., Hughes T.J.R., Taylor R.L., ‘Improved numerical dissipation for time integration algorithms in structural dynamics’, Earthquake Eng. Struct. Dyn., 5, 283-292, 1977.19.Smith C.V.Jr., Smith D.R., ‘Comment on: Application of Hamilton’s law of varying action’, AIAA J., 15, 284-286, 1977.20.Hilber H.M., Hughes T.J.R., ‘Collocation, dissipation and “overshoot” for time integration schemes in structural dynamics’, Earthquake Eng. Struct. Dyn., 6, 99-117, 1978.21.Simkins S.E., ‘Unconstrained variational statements for initial and boundary-value problem’, AIAA J., 16, 559-563, 1978.22.Bailey C.D., ‘Hamilton’s law and the stability of non-conservative continuous system’, AIAA J., 18, 347-349, 1980.23.Delfour M., Hager W., Troohu, F., ‘Discontinuous Garlerkin methods for ordinary differential equations’, Math. Comp., 36, 455-473, 1981.24.Lancaster P., Salkauskas K., ‘Surfaces generated by moving least squares methods’, Math. Comput., 37, 141-158, 1981.25.Simkins S.E., ‘Finite elements for initial value problems in dynamics’, AIAA J., 19, 1357-1362, 1981.26.Smith C.V.Jr., ‘Comment on: Hamilton’s law and the stability of non-conservative continuous systems’, AIAA J., 19, 451-416, 1981.27.Baruch M., Riff R., ‘Hamilton’s principle, Hamilton’s law-6 correct formulations’, AIAA J., 22, 687-692, 1982.28.Washizu K., Variational Methods in Elasticity an Plasticity, 3rd ed, Pergamon Press, New York, 1982.29.Brebbia C.A., Nardini D., ‘Dynamic analysis in solid mechanics by and alternative boundary element procedure’, Soil Dyn. Earthquake Eng., 2, 228-233, 1983.30.Mansur W.J., Brebbia C.A., ‘Transient elastodynamics using a time-stepping technique’, Boundary Elements, Springer Verlag, 667-698, 1983.31.Nardini D., Brebbia C.A., ‘A new approach to free vibration analysis using boundary element’, Appl. Math. Modeling, 7, 157-162, 1983.32.Fletcher C.A.J., Computational Galerkin Method, Springer-Verlag, New York, 1984.33.Johnson C., Nävert U., Pitkaranta J., ‘Finite element methods for linear hyperbolic problem’, Comput. Meth. Appl. Mech. Eng., 45, 285-312, 1984.34.Reddy J.N., Energy and Variational Methods in Applied Mechanics, John Wiley, New York, 1984.35.Riff R., Weller T., Baruch M., “Comment on: Finite elements for initial value problems in dynamics’, AIAA J., 21, 318-319, 1984.36.Riff R., Baruch M., ‘Stability of time finite elements’, AIAA J., 22, 1171-1173, 1984.37.Riff R., Baruch M., ‘Time finite element discretization of Hamilton’s law of varying action’, AIAA J., 22, 1310-1318, 1984.38.Thomée V., Galerkin Finite Element Methods for Parabolic Problems, Springer-Verlag, New York, 1984.39.Borri M., Lanz M., Mantegazza P., ‘Comment on: Time finite element discretization of Hamilton’s law of varying action’, AIAA J., 23, 1457-1458, 1985.40.Borri M., Ghiringhelli G. L., Lanz M., ‘Dynamic response of mechanical system by a weak Hamilton formulation’, Comput. Struct., 20, 495-508, 1985.41.Nardini D., Brebbia C.A., ‘Boundary Element Integral Formulation of Mass Matrices for Dynamic Analysis’, Topics in Boundary Element Research, 2, Springer-Veriag, Berlin, 191-208, 198542.Ahmed S., Banerjee P.K., ‘A new method for vibration analysis by BEM using particular integrals’, J. Eng. Mech. Div. ASCE, 113, 682-695, 1986.43.Reddy J.N., Applied Functional Analysis and Variational Methods in Engineering, McGraw-Hill, New York, 1986.44.Loeffler C.F., Mansur W.J., ‘Analysis of time integration schemes for boundary element applications to transient wave propagation problems, in: BETECH’87, Computational Mechanics Publications, Southampton, 1987.45.Hughes T.J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1987.46.Weaver W.Jr., Johnston P.R., Structural Dynamics by Finite Elements, Prentice-Hall, Englewood Cliffs, NJ, 1987.47.Hughes T.J.R., Hulbert G.M., ‘Space-time finite element methods for elastodynamics: Formulations and error estimates’, Comput. Methods Appl. Mech. Eng., 66, 339-363, 1988.48.Hulbert G.M., Hughes T.J.R., ‘Space-time finite element methods for second-order hyperbolic equations’, Comput. Meth. Appl. Mech. Eng., 84, 327-348, 1990.49.Borri M., Mello F.J., Atluri S.N., ‘Primal and mixed forms of Hamilton’s principle for constrained rigid body system: numerical studies’, Comput. Mech., 7, 205-220, 1991.50.Hulbert G.M., ‘Limitations on linear multistep methods for structural dynamics’, Earthquake Eng. Struct. Dyn., 20, 191-196, 1991.51.Zienkiewicz O.C., Taylor R.L., The Finite Element Method, II, Solid and Fluid Mechanics, Dynamics and Nonlinearity, McGraw-Hill, 1991.52.Aharoni D., Bar-Yoseph P., ‘Mixed finite element formulations in the time domain for solution of dynamic problems’, Comput. Mech., 9, 359-374, 1992.53.Hulbert G.M., ‘Time finite element methods for structural dynamics’, Int. J. Num. Meth. Eng., 33, 307-331, 1992.54.Nayroles B., Touzot G., Villon P., ‘Generalizing the finite element method: Diffuse approximation and diffuse elements’, 10, 307-318, 1992.55.Partridge P.W., Brebbia C.A., Wrobel L.C., The Dual Reciprocity Boundary Element Method, Computational Mechanics Publications and Elsevier Applied Science, Southampton, 1992.56.Borri M., Bottasso C., ‘A general framework for interpreting time finite element formulations’, Comput. Mech., 13, 133-142, 1993.57.Dominguez J., Boundary Elements in Dynamics, Computational Mechanics Publications, Southampton Boston, 1993.58.French D.A., ‘A space-time finite element method for the wave equation’, Comput. Meth. Appl. Mech. Eng., 107, 145-157, 1993.59.Johnson C., ‘Discontinuous Galerkin finite element methods for second order hyperbolic problem’, Comput. Meth. Appl. Mech. Eng., 107, 117-129, 1993.60.Möller P.W., ‘High-order hierarchical A- and L-stable integration methods’, Int. J. Num. Meth. Eng., 36, 2607-2624, 1993.61.Belyschko T., Lu Y.Y., Gu L., ‘Element-free Galerkin methods’, Int. J. Num. Meth. Eng., 37, 229-256, 1994.62.Chirino F., Gallego R., Saez A., Dominguez J., ‘A comparative study of three boundary element approaches to transient dynamics crack problems’, Eng. Anal. Bound. Elements, 13, 11-19, 1994.63.Hulbert G.M., ‘A unified set of single-step asymptotic annihilation algorithms for structural dynamics’, Comput. Meth. Appl. Mech. Eng., 113, 1-9, 1994.64.Liu Y.Y., Belyschko T., Gu, L., ‘A new implementation of the element free Galerkin method’, Comput. Meth. Appl. Mech. Eng., 113, 397-414, 1994.65.Polyzos D., Dassios G., Beskos D.E., ‘On the equivalence of dual reciprocity and particular integrals approaches in the BEM’, Boundary Elem. Commum., 5, 285-288, 1994.66.Providakis C.P., Beskos, D.E., Sotiropoulos D.A. ‘Dynamic analysis of inelastic plate by the D/BEM’, Comput. Mech., 13, 276-284, 1994.67.Liu W.K., Jun S., Zang Y.F., ‘Reproducing Kernel Particle Methods’, Int. J. Num. Meth. Fluids, 20, 1081-1106, 1995.68.Asaithambi N.S., Numerical Analysis, Theory and Practice, Saunders College Publishing, 1995.69.Agnantiaris J.P., Polyzos D., Beskos D.E., ‘Some studies on dual reciprocity BEM for elastodynamic analysis’, Comput. Mech., 17, 270-277, 1996.70.Bathe K.J., Finite Element Procedures, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1996. 71.Belytschko T., Krongauz Y., Organ D., Fleming M., Krysl P., ‘Meshless methods: An overview and recent developments’, Comput. Meth. Appl. Mech. Eng., 139,.3-47, 1996.72.Belytschko T., Krongauz Y., Fleming M., Organ D., Liu W.K., ‘Smoothing and Accelerated Computations in the Element Free Galerkin Method’, Comput. Meth. Appl. Mech. Eng., 74,.111-126, 1996.73.Fung T.C., Leung A.Y.T., ‘On the accuracy of discontinuous Galerkin methods in the time domain’, J. Vibr. Cont., 2, 193-217, 1996.74.Li X.D., Wiberg N.E., ‘Structural dynamic analysis by a time-discontinuous Galerkin finite element method’, Int. J. Num. Meth. Eng., 39, 2131-2152, 1996.75.Li X.D., Adaptive Finite Element Procedures in Structural Dynamics, Ph.D thesis, Dept. of Structure Mechanics, Chalmers University of Technology, Göteborg, 1996.76.Krongauz Y., Belytschko T., ‘Enforcement of essential boundary conditions in meshless approximations using finite elements’, Comput. Meth. Appl. Mech. Eng., 131, 133-145, 1996.77.Duarte C., Oden J.T., ‘Hp-cloud — a meshless method to solve boundary value problems’, Comput. Meth. Appl. Mech. Eng., 139, 237-262, 1996.78.Hegen D, ‘Element-free Galerkin methods in combination with finite element approaches’, Comput. Meth. Appl. Mech. Eng., 135, 143-166, 1996.79.Wang C.C., Quadratic Time Domain BEM Formulation for 2D Elastodynamics Transient Analysis, Ph.D thesis, Dept. of Civil Engineering, Chiao Tung University, Taiwan, 1996.80.Babuška I., Melenk J.M., ‘The partition of unity method’, Int. J. Num. Meth. Eng., 139, 289-314, 1997.81.Krongauz Y., Belytschko T., ‘A Petrov-Galerkin diffuse element method (PG DEM) and its comparison to EFG’, Comput. Mech., 19, 327-333, 1997.82.Mukherjee Y.X., ‘The boundary node method for potential problems’, Int. J. Num. Meth. Eng., 40, 797-815, 1997.83.林聰悟,林佳慧,數值方法與程式,國家圖書館出版,台北,1997。84.Sukumar N., Moran B., Belytschko T., ‘The natural element method in solid mechanics’, Int. J. Num. Meth. Eng., 43, 839-887, 1998.85.Agnantiaris J., Polyzos D., Beskos D.E., ‘Three-dimensional structural vibration analysis by dual reciprocity BEM’, Comput. Mech., 21, 372-381, 1998.86.Atluri S.N., Zhu T., ‘A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics’, Comput. Mech., 22, 117-127, 1998.87.Golberg M.A., Chen C.S., Bowman H., Power H., ‘Some comments on the use of radial basis functions in the dual reciprocity method’, Comput. Mech., 21, 141-148, 1998. 88.Mansur W.J., Carrer, J.A.M., Siqueira E.F.N., ‘Time discontinuous linear traction approximation in time-domain BEM: scalar wave propagation analysis’, Int. J. Num. Meth. Eng., 42, 667-683, 1998.89.Sheng G., Fung T.C., Fan S.C., ‘Parameterized formulations of Hamilton’s law for numerical solutions of dynamic problems: Part I. Global approximation’, Comput. Mech., 21, 441-448, 1998.90.Sheng G., Fung T.C., Fan S.C., ‘Parameterized formulations of Hamilton’s law for numerical solutions of dynamic problems: Part II. Time finite element approximation’, Comput. Mech., 21, 449-460, 1998.91.Yu G., Mansur W.J., Carrer J.A.M., Gong L., ‘Time weighting in time domain BEM’, Eng. Anal. Bound. Elements, 22, 175-181, 1998.92.Zhu T., Zhang J., Atluri S.N., ‘A local boundary integral equation method in computational mechanics and a meshless dicretization approach’, Comput. Mech., 21, 223-235, 1998.93.Zhu T., Atluri S.N., ‘A modified collocation and a penalty formulation for enforcing the essential boundary conditions in element free Galerkin method’, Comput. Mech., 21, 211-222, 1998.94.Atluri S.N., Kim, H.-G., Cho J.Y., ‘A critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods’, Comput. Mech., 24, 348-372, 1999.95.Araújo F.C., Mansur W.J., Nishikava L.K., ‘A linear q time-marching algorithm in 3D BEM formulation for elastodynamics’, Eng. Anal. Bound. Elements, 23, 825-833, 1999.96.Golberg M.A., Chen, C.S., Bowman H., Power H., ‘Some recent results and proposals for the use of radial basis functions in the BEM’, Eng. Anal. Bound. Elements, 23, 285-296, 1999.97.Yu G., Mansur W.J., Carrer J.A.M., ‘The linear q method for 2-D elastodynamic BE analysis’, Comput. Mech., 24, 82-89, 1999.98.Zhu T., Zang J., Atluri S.N., ‘A meshless numerical method based on the local boundary integral equation (LBIE) to solve linear and non-linear boundary value problems’, Eng. Anal. Bound. Elements, 23, 375-389, 1999.99.Zhu T., ‘A new meshless regular local boundary integral equation (MRLBIE) approach’, Int. J. Num. Meth. Eng., 46, 1237-1252, 1999.100.張世穎,時間不連續葛勒金有限元素法穩定性及精確度之研究,碩士論文,中原大學,1999。101.Atluri S.N., Zhu T., ‘New concepts in meshless methods’, Int. J. Num. Meth. Eng., 47, 537-556, 2000.102.Breitkopf P., Rassineux A., Touzot, Gilbert, Villon P., ‘Explicit form and efficient computation of MLS shape functions and their derivatives’, Int. J. Num. Meth. Eng., 48, 451-466, 2000.103.Carrer J.A.M., Mansur W.J., ‘Time discontinuous linear traction approximation in time-domain BEM: 2-D elastodynamics’, Int. J. Num. Meth. Eng., 49, 833-848, 2000.104.Chien C.C., Wu T.Y., ‘An improved predictor/multi-corrector algorithm for a time-discontinuous Galerkin finite element method in structural dynamics’, Comput. Mech., 25, 430-437, 2000.105.Cheng A.H.-D., ‘Particular solutions of Laplacian, Helmholtz-type, and polyharmonic operators involving higher order radial basis functions’, Eng. Anal. Bound. Elements, 24, 531-538, 2000.106.De S., Bathe K.J., ‘The method of finite spheres’, Comput. Mech., 25, 329-345, 2000.107.Liu G.R., Gu Y.T., ‘Meshless local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches’, Comput. Mech., 26, 536-546, 2000.108.Partridge P.W., ‘Toward criteria for selecting approximation functions in dual reciprocity method’, Eng. Anal. Bound. Elements, 24, 519-529, 2000.109.Wagner G.J., Liu W.K., ‘Application of essential boundary conditions in mesh-free methods: a corrected collocation method’, Int. J. Num. Meth. Eng., 47, 1367-1379, 2000.110.陳育賢,空間邊界元素法與時間有限元素法於二維彈性動力問題之研究,碩士論文,中原大學,2000。111.Chien C.C., Wu T.Y., ‘A particular integral BEM/time-discontinuous Galerkin FEM methodology for solving 2-D elastodynamic problems’, Int. J. Solids Struct., 38, 289-306, 2001.112.Gu Y.T., Liu G.R., ‘A meshless local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids’, Comput. Mech., 27, 188-198, 2001.113.Liu G.R., Gu Y.T., ‘A point interpolation method for two-dimensional solids’, Int. J. Num. Meth. Eng., 50, 937-951, 2001.114.Sukumar N., Moran B., Semenov A.
Y., Belikov V.V., ‘Natural neighbour Galerkin method ’, Int. J. Num. Meth. Eng., 50, 1-27, 2001.115.Tanaka M., Chen W., ‘Dual reciprocity BEM applied to transient elastodynamic problems with differential quadrature method in time’, Comput. Meth. Appl. Mech. Eng., 190, 2331-2347, 2001116.Chien C.C., Wu T.Y., ‘An advanced time-discontinuous Galerkin finite element method for structural dynamics’, Comput. Model. Eng. & Sci, 2, 211-224, 2001.117.Chien C.C., Chen Y.H., ‘Dual reciprocity BEM analysis of 2-D elastodynamic problems by time-discontinuous Galerkin FEM’, Eng. Anal. Bound. Elements, (reviewed).118.吳東岳,簡秋記,’無網格法之彈性動力分析’,中國土木水利工程學刊(審查中)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔