(3.238.96.184) 您好!臺灣時間:2021/05/08 04:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:白哲全
研究生(外文):Che-Chuan Pai
論文名稱:考量不同情形之動態平行機排程
論文名稱(外文):The study on dynamic parallel machine scheduling problems
指導教授:蘇玲慧蘇玲慧引用關係
指導教授(外文):Ling-Huey Su
學位類別:碩士
校院名稱:中原大學
系所名稱:工業工程研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:36
中文關鍵詞:平行機排程設置時間總延遲時間總完成時間工作可分割
外文關鍵詞:parallel machine schedulingmakespansetup timetotal tardinesspreemptive jobs
相關次數:
  • 被引用被引用:2
  • 點閱點閱:81
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要研究單製程具有平行機台之排程問題,針對機器、工作與操作員分三種不同特性之排程加以探討。在考量在製品(WIP)的產出時間(Throughput Time)與服務水準之下,各針對所有工作完成時間(Makespan)與總延遲時間(Total Tardiness)為績效指標,以符合實際生產環境的需求。
首先,研究平行機動態排程,考慮工作非一次全部到達,及機器可開始加工時間非同時,以所有工作完成時間最小化為評量指標。其次再延伸問題,考量交期限制下所有工作的總延遲時間最小化。最後,針對工作具可分割性與設置時間之平行機排程,將工作的設置時間與加工時間分開。探討每位操作員負責的機器間,加工的工作可進行分割,並以所有工作完成時間最小化為績效指標。
由於本研究之問題均屬NP-Hard,基於求解的效率,提出啟發式排程演算法並個別建立數學模式,以驗證各啟發式排程演算法所得結果的正確性,及作為評估求解品質成效的基準。
The research addresses the problem of dynamic parallel machine scheduling. Three different
models are considered according to machines,jobs and operators.
In the first case, we consider the dynamic parallel machines in a single stage with the objective of makespan minimization. The problem is extended to the objective with total tardiness minimization. Finally, we consider the problem for the case in which the job is preemptive within each operator, provided that the setup time is separated from the processing time.
All three problems are known to be NP-hard even for the case of two identical parallel machines. An integer programming model and a heuristic algorithm are provided for each case. Experimental results show that the proposed heuristic algorithms are effective and efficient.
目錄
中文摘要i
英文摘要ii
誌謝iii
目錄iV
圖目錄Vi
表目錄Vii
符號說明Viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 1
1.3 研究範圍 1
1.4 研究方法與架構 2
第二章 文獻探討 3
2.1 單製程排程概述 3
2.2 單製程排程相關文獻 4
第三章 單製程平行機排程 9
3.1 平行機動態排程 9
3.1.1 基本假設與說明 9
3.1.2 數學模式的建立 9
3.1.3 啟發式排程演算法 10
3.1.4 範例說明 13
3.2 交期限制之平行機動態排程 14
3.2.1 基本假設與說明 14
3.2.2 數學模式的建立 14
3.2.3 啟發式排程演算法 15
3.2.4 範例說明 17
3.3 工作具可分割性與設置時間之平行機排程 18
3.3.1 基本假設與說明 18
3.3.2 數學模式的建立 19
3.3.3 啟發式排程演算法 20
3.3.4 範例說明 23
第四章 模擬結果與分析 24
4.1 平行機動態排程 24
4.2 交期限制之平行機動態排程 26
4.3 工作具可分割性與設置時間之平行機排程 30
第五章 結論與未來展望 32
5.1 結論 32
5.1.1 平行機動態排程 32
5.1.2 交期限制之平行機動態排程 32
5.1.3 工作具可分割性與設置時間之平行機排程 32
5.2 未來展望 33
參考文獻 34
1.Alidaee, B., and D. Rosa, “Scheduling parallel machines to minimize total weighted and unweighted tardiness,” Computers Ops Res., 24(8), 775-788(1997).2.Alidaee, B., and S. Gopalan, “A note on the equivalence of two heuristics to minimize total tardiness,” European Journal of Operational Research, 96, 514-517(1997). 3.Arkin, E. M., and R. O. Roundy, “Weighted-Tardiness scheduling on parallel machines with proportional weights,” Operations Research, 39(1), 64-81(1991).4.Azizoglu, M., and O. Kirca, “Tardiness minimization on parallel machines,” Int. J. Production Economics, 55, 163-168(1998).5.Azizoğlu, M., S. Kondakci and Ö. Kirca, “Bicriteria scheduling problem involving total tardiness and total earliness penalties,” International Journal of Production Economics, 23, 17-24(1991). 6.Baker, K. R., and J. Bertrand, “A dynamic priority rule for scheduling against due-date,” J. Opns. Mgmt, 3, 37-42(1982).7.Biskup, D., and T. C. E. C. Cheng, “Multiple-machine scheduling with earliness, tardiness and completion time penalties,” Computers & Operations Research, 26, 45-57(1999).8.Chen, B., and A. P. A. Vestjens, “Scheduling on identical machines:How good is LPT in an on-line setting?,” Operations Research Letters, 21, 165-169(1997).9.Cheng, T. C. E., “A heuristic for common due-date assignment and job scheduling on parallel machines,” J. Opl Res. Soc., 40(12), 1129-1135(1989). 10.Cheng, T. C. E., “A state-of-the-art review of parallel-machine scheduling research,” European Journal of Operational Research, 47, 271-292(1990).11.Cheng, T.C.E., Z.-L. Chen and M.Y. Kovalyov, “Parallel—machine batching and scheduling to minimize total completion time,” IIE Transactions, 28, 953-956(1996).12.Dogramaci, A., and J. Surkis, “Evaluation of a heuristic for scheduling independent jobs on parallel identical processor,” Management Science, 25(12), 1208-1216(1979).13.Fatemi Ghomi, S. M. T., and F. Jolai Ghazvini, “A pairwise interchange algorithm for parallel machine scheduling,” Production Planning & Control, 9(7), 685-689(1998).14.Gao, L., C. Wang and D. Wang, “A production scheduling system for parallel machines in an electrical appliance plant,” Computers ind. Engng, 35(2), 105-108(1998). 15.Graves, S. C., “A review of production scheduling,” Operations Research, 29(4), 646-675(1981).16.Hu, Y., R. Minciardi and M. Paolucci, “Techniques for dynamic scheduling in a manufacturing environment,” IEEE, 31, 404-408, (1992).17.Khaled Djellab, “Scheduling preemptive jobs with precedence constraints on parallel machines,” European Journal of Operational Research, 117, 355-367(1999).18.Koulamas, C., “The total tardiness problem:Review and extensions,” Operations Research, 42(6), 1025-1039(1994).19.Koulamas, C., “Polynomially solvable total tardiness problem:Review and extensions,” Omega. Int. J. Mgmt Sci., 25(2), 235-239(1997).20.Luh, P. B., D. J. Hoitomt and E. Max, “Scheduling generation and reconfiguration for parallel machines,” IEEE Transactions On Robotics and Automation, 6(6), 687-695(1990). 21.Min, L., and W. Cheng, “A genetic algorithm for minimizing the makespan in the case of scheduling identical parallel machines,” Artificial Intelligence in Engineering, 13, 399-403(1999).22.Monma, C. L., and C. N. Potts, “Analysis of heuristics for preemptive parallel machine scheduling with batch setup times,” Operations Research, 41(5), 981-993(1993).23.Rachamadugu, R. M. V., “A note on the weighted tardiness problem,” Operations Research, 35(3), 450-452(1987). 24.Sarin, S. C., and R. Hariharan, “A two machine bicriteria scheduling problem,” Int.J.Production Economics, 65, 125-139(2000).25.Sivrikaya-Serifoglu, F., and G. Ulusoy, “Parallel machine scheduling with earliness and tardiness penalties,” Computers & Operations Research, 26, 773-787(1999).26.Sridharan, S. V., and Z. Zhou, “Dynamic non-preemptive single machine scheduling,” Computers Ops Res., 23(12), 1183-1190, (1996).27.Suer, G. A., and Z. Czajkiewicz, “A heuristic procedure to minimize number of tardy jobs and total tardiness in single machine scheduling,” Computers and Industrial Engineering, 23(4),145-148(1992).28.Süer, G. A., F. Pico and A. Santiago, “Identical machine scheduling to minimize the number of tardy jobs when lot-splitting is allowed,” Computers ind. Engng, 33(1), 277-280(1997). 29.Suresh, V., and D. Chaudhuri, “Bicriteria scheduling problem for unrelated parallel machines,” Computers ind. Engng, 30(1), 77-82, (1996). 30.Piersma, N., and W. V. Dijk, “A local search heuristic for unrelated parallel machine scheduling with efficient neighborhood search,” Mathl. Comput. Modelling, 24(9),11-19(1996).31.Pinedo, M., “Stochastic scheduling with release dates and due dates,” Operations Research, 31(3), 559-572(1983).32.Potts, C. N., and L. N. V. Wassenhove, “A branch and bound algorithm for the total weighted tardiness problem,” Operations Research, 33(2), 363-377(1985).33.Webster, S. T., “A general lower bound for the makespan problem,” European Journal of Operational Research, 89, 516-524, (1996).34.Xing, W., and J. Zhang, “Parallel machine scheduling with splitting jobs,” Discrete Applied Mathematics, 103, 259-269(2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔