(3.236.222.124) 您好!臺灣時間:2021/05/13 21:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李雨庭
研究生(外文):Sammy Lee
論文名稱:半導體晶圓廠自動物料搬運系統之設計
論文名稱(外文):Design of Automated Material Handling Systems in Wafer Fab
指導教授:宮大川宮大川引用關係
指導教授(外文):Dah-Chuan Gong
學位類別:碩士
校院名稱:中原大學
系所名稱:工業工程研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:118
中文關鍵詞:軌道佈局半導體自動物料搬運系統無塵室
外文關鍵詞:SemiconductorCleanroomAutomated Material Handling SystemTrack layout
相關次數:
  • 被引用被引用:10
  • 點閱點閱:252
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
在半導體業界中,由於複雜的半導體製程及生產流程,而容易造成生產作業人員在搬運的過程中因疏失而產生損失,因此自動物料搬運系統成為半導體業必備的設施,並且很快地被廣泛應用在半導體業界。同時自動物料搬運系統透過改良自動物料搬運系統效率的技術及整合系統,而使得半導體生產線的物料供應及傳送順暢。

近年來,有很多有關自動物料搬運系統運行法則被提出來,而這些法則可藉由程式的修改,很快得到改善,但是硬體設施中的軌道佈局在系統被安裝完成後就很難更改。在最初系統建構階段,對於軌道佈局做出正確的選擇是非常重要的,一個錯誤的抉擇將導致整個系統績效不彰,而且造成無法彌補回復的地步。

本論文首先將節錄過去一些不同派車法則所做過的研究,並由法則中選擇業界常使用的最短路徑(Shortest Travel Distance, STD)以及先進先服務(First Come First Served)兩個法則,做為本論文第三章模擬實驗的派車法則,同時也分享目前業界實際應用的相關經驗。其次,主要的目地是論文參考相關經驗,提出三種業界常用的佈局,並以ARENATM為分析工具來比較自動物料搬運系統的三個不同軌道佈局之優劣,以提供系統建構前在成本考量及確保生產績效最佳化的前提下選擇一個自動物料搬運系統佈局的評估方法,避免因不當抉擇而需於系統運作後在工廠內修改所造成的成本損失。其結果顯示並聯迴圈(PDC)的運送績效最佳,而獨立迴圈(IDC)次之,同心迴圈(CDC)最差。由於並聯迴圈的運送績效最佳而且軌道數量少成本低,適合供路徑選擇要求少,系統穩定度高為設計重點的廠商使用。獨立迴圈與並聯迴圈的運送績效相差不大,卻提供了較彈性的路徑選擇和對於影響系統運作的外在因素,如機械故障、保養等較佳的應變能力,因此獨立迴圈的佈局適合軟體能力強且要求系統應變能力佳的廠商使用。本研究之模擬實驗設計有助於傳統自動物料搬運系統設計分析,並且這三個軌道設計方案也在半導體業界實際被安裝應用,驗證了這些方案的可行性。在最後的章節裡,將對半導體自動物料搬運系統未來的趨勢做介紹及探討。
The Automated Material Handling System (AMHS) is indispensable to the Semiconductor wafer Fab and has been become rapidly widespread because of the great complexity of operation and process flow that cause the easy occurrence of miss-operation during wafers handling. It is a performance-effective improved through technique and integrated system to get wafers lot supply deliveries streamlined for the production line.

Recently a lot of the rules of system running have been proposed. The rules can be modified by software readily, however, the track layout of hardware is difficult to change while it works. It is very important to make the correct decision while designing the basic construction of track layout in the very beginning stage. Once the wrong decision was made the poor-performance was caused and impossible to recover or compensate.

First of all, this thesis is to give a comprehensive summary of previous research done in concept and to analyze several different rules. There will be a simulation of two dispatching rules, Shortest Travel Distance, STD, and First Come First Served, FCFS, which are most widely used, in current industry in chapter 3. And also shares with the related experience of current application in the semiconductor wafer fab. Secondly, there is a main purpose to based on the past experience and related information, here we propose three alternatives of AMHS tracks layout and analyze the three alternatives of AMHS track layout by using ARENATM simulation. To apply simulation before construction is proved to be a considerably more cost effective by means of ensuring optimized productivity rather than the cost of retrofitting changes within a fab after it has been completed and in production run stage. Results of simulation show that the best performance could be seen in Parallel Dual Circuit (PDC) and the next is Independence Dual Circuit (IDC) but Concentric Dual Circuit (CDC) is the last. The PDC demonstrate the best performance, less number of tracks and lower cost that is suitable for whom has system high reliability and less routing. IDC less performance but not much compared with PDC provides the more flexibility of route and less influence by variable factors, for example machine out of function or during preventive maintenance. Therefore, IDC is suitable for who has strong software capability and good system flexibility. This study examines the models and simulation experiments that assist with analyzing cleanroom material handling issues such as designing conventional automated material handling system. Some alternatives in the semiconductor industry were conducted to verify the effectiveness and the feasibility of this design concept. Finally, this thesis presents the current trend of wafer fabs and AMHS prospective aspect in Semiconductor.
摘要i
Abstractii
誌謝iii
Table of Contentsiv
List of Figuresvi
List of Tablesvii
Chapter 1 Introduction1
1.1 Background and Motivation1
1.2 Coverage of Thesis3
1.2.1 Purpose3
1.2.2 Framework4
1.3 Thesis Overview5
Chapter 2 Literature Review6
2.1 Interbay6
2.2 Intrabay6
2.3 300mm Fab layout concepts7
2.4 The dispatching rules7
2.4.1 The decision points of event-driven dispatching strategy7
2.4.2 The categorization of dispatching rules of applications9
2.5 Current situation of dispatching rules in wafer fab10
2.5.1 The developed progress of software design in AMHS industry10
2.5.2 The AMHS information collection through the MES (Manufacturing Execution System) in real time13
2.5.3 The categorization of AMHS design15
Chapter 3 Model Construction17
3.1 System description17
3.1.1 Fab layout concepts17
3.2 Steps of simulation20
3.2.1 Three alternatives of interbay track layout21
3.2.1.1 Determinations of fab interbay layout21
3.2.1.2 Determinations of the curviform or straight line Rail23
3.2.1.3 Determinations of the tracks number23
3.2.2 The decision of alternatives type of AMHS track layout25
3.3 Simulation modeling26
3.3.1 Assumption26
3.3.2 Definitions27
3.3.3 Data collection28
3.3.3.1 Stocker cycle time28
3.3.3.2 Process flow29
3.4. Simulation experiment design32
3.4.1 Graphics development32
3.4.2 The verification data36
3.4.3 Simulation software37
Chapter 4 The output analysis and conclusions43
4.1 Analysis of simulation outputs43
4.1.1 Output data43
4.1.2 Output analysis46
4.1.2 Model report47
4.2 Conclusions48
4.2.1 The benefit conversion to cost48
4.2.2 Recommendation48
4.3 The simulation model considering for each project49
Chapter 5 The conclusions and prospective aspect50
5.1 The conclusions of thesis50
5.2 The Automated Material Handlings System (AMHS) overview in semiconducting fabs51
5.3 MES and AMHS integration54
5.4 The challenge in 300mm wafer fab55
5.5 Next steps55
5.6 The AMHS market share:57
References58
Attachment 1: The PDC simulation summary data63
Attachment 2: The CDC simulation summary data79
Attachment 3: The IDC simulation summary data97
[01] Bader, Besler, Schliesser and Dorner, A View to the Future — A Modular Simulation Cost-Efficient Fab-Wide Planning and the Simulation of Automated Material Handling Systems in the semiconductor Industry, 1999.[02] Barry, Johnson, Sal Mastroianni, Tim Stanley and Dan Tull, 300mm Fab Architecture, Future Fab Volume 1 Issue 3, Technology Publishing London, 1997, P. 51-58. [03] Campbell, Laitinen, Overhead Intrabay Automation And Microstocking — a virtual fab case study, 1997.[04] Castagna, Albert and Aarab, Piloting of AGV Systems with dispatching rules, La chantrerie, CP 3003, 44087 Nantes Cedex 03, 1996.[05] Chang, S.H. and Egbelu, P. J.,” Dynamic Relative Positioning Of AGVs In A Loop Layout To Minimize Mean System Response Time”. Internation Journal of Production Research, 34(6), 1655-1673, 1996.[06] Chuang, Leon Bing-Shiun and Heim., A Simulation Testbed For Investigation Of Tandem AGV Systems, Industrial Engineering, 352650 University Of Washington Seattle, Washington 98195, U.S.A,1996.[07] Colvin, T. D, Lawrence, F. P and Mackulak G. T, Soft Simulation Crucial For New Automated Fab Decisions, Solid State Technology, 41, June, 1998, p161-168.[08] Colvin T., Holloway. S., Mackulak, G.T. and Sokhan-Sanj, S., A Semiconductor Delivery Time Minimization Study: Three Design Alternatives, The 9th SCS European Simulation Symposium and Exhibition, 1997, pp478-482. [09] Csatary, Nolan, Wolf and Honold, 300 mm Fab Layout And Automation Concepts, Future Fab 5, Technology Publishing, London, 1998, p.37-41 [10] Espufia and Puigjaner., Transport Planning And Scheduling Using Automatic Guided Vehicles In A CIM Environment, 1999.[11] Egbelu, P. J., “Pull Versus Push Strategy For Automated Guided Vehicle Load Movement In A Batch Manufacturing System”, Journal of Manufacturing System, 6(3), p209-221, 1987.[12] Kim, C. W. and Tanchoco, J. M. A.., “Operational Control Of A Bi-directional Automated Guided Vehicle System”, Internation Journal of Production Research, 31(9),p2123-2138, 1993. [13] Kim, C. W., Tanchoco, J. M. A. and Koo P. -H., “AGV Dispatching Based On Workload Balancing”, Internation Journal of Production Research, 37(17), p4053-4066, 1999.[14] Kim, C. W. and J. M. A. Tanchoco, “Conflict-Free Shortest-Time Bi-directional AGV Routing”, Internation Journal of Production Research, 29(12), p2377-2391,1991. [15] Klein, C. W. and Kim J..,” AGV Dispatching”, Internation Journal of Production Research, 34(1),p 95-110, 1996. [16] Kondili, E., Pantelides, C. C. and R. W. Sargent., A General Algorithm for Scheduling Batch Operations, Proc. 3rd Intl. Symp, On Process Systems Engineering, p62-75, 1988 .[17] Faraji, M. and Batta, R., “Forming Cell To Eliminate Vehicle Interference And System Locking In An AGVS”, Internation Journal of Production Research, 32(9), p2219-2241, 1994.[18] Frank Robertson and Len Foster, 300mm Factory System Integration, Future Fab Volume 1 Issue 4, Technology Publishing London, p29-31, 1997.[19] Frank Robertson and Alan Allan, 300mm Conversion Timing, Future Fab Volume 1 Issue 3, Technology Publishing London, p27-33, 1997. [20] Gaskins, R. J. and J. M. A. Tanchoco, “Flow Path Design For Automated Guided Vehicle System”, Internation Journal of Production Research, 25(5), p667-676, 1987.[21] Gargini, Paolo and Pillai, Devadas., Integrated Factory Designs for 300mm Facilities, SEMICON Japan , 1997. [22] Graells, M., Canton, J., Peschaud B. and L. Puigjaner., “General Approach And Tool For The Scheduling Of complex Production System”, Computers and chemical Engineering, vol. 22S, p395-402, 1998.[23] Harit, S.., Partitioning Algorithm for Multiple Server Tandem Loop Configuration, Department of Industrial Engineering, 1995. [24] Honold, Alfred and Werner Scheler, Mini-environment System for 300mm Wafer Manufacturing, ICG Publishing, London, 1996, p 65-96.[25] Ho, Ying-Chin, A Dynamic-Zone Strategy For Vehicle-Collision Prevention And Load Balancing In An AGV System With A Single-Loop Guide Path, 0166-3615, 2000.[26] International Technology Roadmap for Semiconductors, Factory Integration Chapter: Potential Solutions for Material Handling Systems, Version 1999. [27] Lin, James T., Wang,, Fu-Kwun and Ping-Yung Yen., Simulation Analysis Of Dispatching Rules For An Automated Interbay Material Handling System In Wafer Fab. [28] Ling Qiu and Wen-Jing Hsu., Routing AGVs on a Mesh-like Path Topology, 0-7803-6363-9, 2000.[29] Lung, C. H., Cochran, J. K., Mackulak, G. T. and J. E Urban, Computer simulation Software Reuse By Generic/Specific Domain Modeling Approach, Internation Journal of Software Engineering and Knowledge engineering, Vol. 4. No. 1, p 81-102, 1994.[30] Mackulak and Lawrence Theron Colvin., Effective Simulation Model Reuse: A case study for AMHS Modeling, PRI Automation Planning and Design 1250 S. Clearview Ave. Mesa, Arizona 85208, U.S.A, 1998.[31] Mackulak, G. T., Colvin, T. and Sokhan-Sanj, S., “A Simulation Comparison Of Four Competing Intrabay Handling System for the Next Generation of Semiconductor Manufacturing”, 2nd International conference on Industrial Engineering Applications and Practice, p129-134, 1997. [32] Mackulak, G. T., Lawrence F. P. and Rayter, J., “Simulation analysis of 300mm Intrabay Automation Vehicle Capacity Alternative”s, Advanced Semiconductor Manufacturing Conference, p445-450, 1998. [33] Mahadevan, B. and Narendran, T. T.,” A Hybrid Modeling Approach To The design Of An AGV-Based Material Handling System For An FMS”, Internation Journal of Production Research, 32(9), p2015-2030, 1994.[34] Neal G. Pierce, Stafford., Modeling and Simulation of Material Handling for Semiconductor Wafer Fabrication, Motorola APRDL 3501 Ed Bluestein Blvd. MD: K-10 Austin. TX 78721, 1994.[35] Nadoli and Rangaswami., An Integrated Modeling Methodology For Material Handling Systems Design, Intel Corporation 5000 W. Chandler Blvd. Chandler. AZ 85226, U.S.A, 1993.[36] Nadoli and Pillai., Simulation In Automated Material Handling systems Design For Semiconductor Manufacturing, Intel Corporation 5000 W. Chandler Blvd. Chandler, AZ 85226, 1994. [37] Neal G. Pierce., Golden Nuggets of AMHS Modeling And Design for Semiconductor Wafer Fabrication, Motorola APRDL 3501 Ed Bluestein Blvd. MD: K-10 Austin., 1994.[38] Pegden, C. D., Shannon, R. E. and R. P. Sadowski., Introduction to Simulation Using SIMAN. 2nd Ed. New York: McGraw-Hill, 1995. [39] Pierce and Stafford., Simulation AMHS Performance for Semiconductor Wafer Fabrication, 1995. [40] Pillai, Devadas and Srinivasan, S., Material Handling Automation In 300 mm Wafer Fabrication Facilities, ISSM paper, Tokyo, 1996. [41] Pillai, Quinn, Kryder and Charlson., Integration of 300mm Fab Layouts And Material Handling Automation, 1999. [42] Plata., John J. 300mm Fab Design — A Total Factory Perspective, Future Fab Volume 1 Issue4, Technology Publishing London, p21-27, 1997. [43] Prasad and Rangaswami., Analysis Of Different AGV Control Systems In An Integrated IC Manufacturing Facility, Using Computer Simulation, Intel Corporation MS Ch2-31 5000 W Chandler Boulevard Chandler AZ 85226, 1988.[44] RoBmann, Uthoff, and Valk. Towards Realistic Simulation of Robotic Workcells, Institute of Robotics Research University of Dortmund. [45] Rajotia, S., Shanker, K. and Batra, J. L.., “A semi-dynamic Time Window Constrained Routing Strategy In An AGV System”, Internation Journal of Production Research, 36(1),p 35-50, 1998. [45] Savory, P. and Mackulak, G. T., The Impact Of Intelligent Tools on Simulation Methodology, International Journal of Software engineering and Knowledge Engineering, Vol. 6, No. 1. p135-158, 1996.[46] Sokhan-Sanj, S., Lawrence, F. P., Paprotny, I. and Mackulak, G. T.., Techniques for Reducing Simulation Model Building Cycle Time, Summer Computer Simulation Conference, Reno, NV, 1998.[47] Stanley and Renelt., Simulation Based Decision Support For Future 300mm Automated Material Handling, Semiconductor300 P.O. Box 10 09 46 D-01079 Dresden, Germany, 2000.[48] Taghaboni, F. and Tanchoco, J. M. A.., “Comparison Of Dynamic Routing Techniques For Automated Guided Vehicle System”, Internation Journal of Production Research, 33(10), p2653-2669, 1995. [49] Ulgen and Kedia., Using Simulation Design of A Cellular Assembly Plant With Automatic Guided Vehicles, Dept. of Industrial & Systems Engineering University of Michigan-Dcarborn 4901 Evergreen Road Dearborn. Michigan 48128, 1990. [50] Vee, Voon-Yee, Hsu, Wen-Jing and Sneha SHAH., Parallel Simulation of AGV in Container Port Operations, 0-7695-0589-2, 2000. [51] Westphal and Gramlich., Automation Structure Of A Semiconductor Fab Using Factory Communications, 0-7803-4503-7, 1998
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔