(3.238.99.243) 您好!臺灣時間:2021/05/16 23:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:施子偉
研究生(外文):Tzn-Wei Shih
論文名稱:混合醇胺水溶液之比熱量測:DEA/MDEA/H2O,DEA/AMP/H2O,及DEA/2-PE/H2O系統
論文名稱(外文):Measurements of heat capacity of aqueous alkanolamine solutions:DEA/MDEA/H2O, DEA/AMP/H2O, and DEA/2-PE/H2O systems
指導教授:李夢輝李夢輝引用關係
指導教授(外文):Meng-Hui Li
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:123
中文關鍵詞:混合醇胺水溶液比熱混合醇胺
外文關鍵詞:heat capacityaqueous alkanolamine solutionDSC
相關次數:
  • 被引用被引用:1
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2

本研究利用示差掃描熱量計(Differential Scanning Calorimeter, DSC)來量測單一醇胺水溶液2-PE/H2O ,量測的濃度範圍為2-PE的莫耳分率=0.2/0.4/0.6/0.8mol%;及量測混和醇胺DEA/MDEA,DEA/AMP,及 DEA/2-PE,量測的濃度範圍為DEA的莫耳分率=0.1至0.9 mol%。混和醇胺水溶液方面,量測DEA/MDEA/H2O, DEA/AMP/H2O及DEA/2-PE/H2O系統之比熱值,量測的濃度範圍為水的莫耳分率 =0.8至0.2 mol%,各系統量測的溫度範圍皆為30℃到80℃。
所量測的CP值由過剩比熱關係式來代表,最後計算結果得到二成份系統 的平均絕對誤差為4.3%,CP的平均絕對誤差為0.1%;而三成份系統 的平均絕對誤差為14.8%,CP的平均絕對誤差為0.16%。
有效的設計氣體吸收相關設備如吸收塔、汽提塔、熱交換器之蒸氣用量、循環量等皆須相關數據如比熱等數據之量測及預估計算。醇胺水溶液的比熱對於計算冷卻水之用量將會是一個重要的設計依據。所以本研究所得結果可做為設計吸收氣體程序中熱交換器之基礎比熱數據及計算工具。


The heat capacities of aqueous mixtures of diethanolamine with N-methyldiethanolamine, diethanolamine with 2-amino-2-methyl-1-propanol and diethanolamine with 2-piperidine ethanol from 30 to 80℃ with a differential sacnning calorimeter (DSC) have been measured. An excess molar heat capacity expression using the Redlich-Kister equation for the composition dependence is used to represent the measured CP of aqueous alkanolamine solutions. The overall average absolute percentage deviations for the calculation of the molar heat capacities are 0.1% and 0.16% for the binary and ternary systems, respectively. The heat capacities of aqueous mixtures of diethanolamine with N-methyldiethanolamine, diethanolamine with 2-amino-2-methyl-1-propanol and diethanolamine with 2-piperidine ethanol presented in this study are, in general, of sufficient accuracy for most engineering-design calculations.


目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VI
第一章 緒論 1
§ 1-1 前言 1
§ 1-2 醇胺的種類及其特性 2
§ 1-3 研究動機及方向 5
第二章 原理.. 11
§ 2-1 DSC之簡介 12
2-1-1 DSC之定義 12
2-1-2 DSC之類型 13
§ 2-2 DSC量測比熱之原理 17
2-2-1 文獻回顧 17
2-2-2 本研究之熱力學推導20
§ 2-3 液態比熱之計算 23
第三章 實驗 26
§ 3-1 實驗設備 26
§ 3-2 實驗藥品 27
§ 3-3 實驗步驟 27
3-3-1 樣品之製備 27
3-3-2 DSC爐子的清潔 28
3-3-3 DSC爐子的校正 29
3-3-4比熱量測步驟 31
第四章 結果與討論 34
§ 4-1 影響實驗結果的因素 34
§ 4-2 實驗結果與討論 37
4-2-1 單一醇胺水溶液及混合醇胺37
4-2-2 混合醇胺水溶液 60
第五章 結論 116
第六章 參考文獻 117
表目錄
Table 1-1 常見醇胺的結構式及分類 4
Table 1-2 Literature review on the heat capacity of aqueous alkanolamine systems 8
Table 4-1 Parameters of heat capacity of amines 41
Table 4-2 Parameters of excess molar heat capacity for binary systems 42
Table 4-3 Heat capacities of 2-PE(1) + H2O(2)43
Table 4-4 Heat capacities of DEA(1) + MDEA(2)46
Table 4-4 Heat capacities of DEA(1) + MDEA(2)47
Table 4-4 Heat capacities of DEA(1) + MDEA(2)48
Table 4-5 Heat capacities of DEA(1) + AMP(2) 50
Table 4-5 Heat capacities of DEA(1) + AMP(2) 51
Table 4-5 Heat capacities of DEA(1) + AMP(2) 52
Table 4-6 Heat capacities of DEA(1) + 2-PE(2)54
Table 4-6 Heat capacities of DEA(1) + 2-PE(2)55
Table 4-6 Heat capacities of DEA(1) + 2-PE(2)56
Table 4-7 Parameters of excess molar heat capacity for binary systems59
Table 4-8 Heat capacities of DEA(1) + MDEA(2) + H2O(3) for x3 = 0.8 62
Table 4-9 Heat capacities of DEA(1) + MDEA(2) + H2O(3) for x3 = 0.6 63
Table 4-10 Heat capacities of DEA(1) + MDEA(2) + H2O(3) for x3 = 0.4 64
Table 4-11 Heat capacities of DEA(1) + MDEA(2) + H2O(3) for x3 = 0.2 65
Table 4-12 Comparison of the calculated and the literature values for molar heat capacity of DEA(1) + MDEA(2) + H2O(3) 78
Table 4-13 Heat capacities of DEA(1) + AMP(2) + H2O(3) for x3 = 0.8 80
Table 4-14 Heat capacities of DEA(1) + AMP(2) + H2O(3) for x3 = 0.6 81
Table 4-15 Heat capacities of DEA(1) + AMP(2) + H2O(3) for x3 = 0.4 82
Table 4-16 Heat capacities of DEA(1) + AMP(2) + H2O(3) for x3 = 0.2 83
Table 4-17 Heat capacities of DEA(1) + 2-PE(2) + H2O(3) for x3 = 0.8 97
Table 4-18 Heat capacities of DEA(1) + 2-PE(2) + H2O(3) for x3 = 0.6 98
Table 4-19 Heat capacities of DEA(1) + 2-PE(2) + H2O(3) for x3 = 0.4 99
Table 4-20 Heat capacities of DEA(1) + 2-PE(2) + H2O(3) for x3 = 0.2 100
Table 4-21 Parameters of excess molar heat capacity for ternary systems 115
圖目錄
Figure 2-1 Schematic of power-compensated DSC 15
Figure 2-2 Schematic of heat flux DSC 16
Figure 2-3 DSC curves for heat capacity measurement on molten polyethylene (PE). (Haines, 1995) 18
Figure 2-4 DSC curves for heat capacity measurement 21
Figure 4-1 Excess molar heat capacity of 2-PE(1) + H2O(2): Points,exptl data; lines, calculated using eq.11 and eq.12 44
Figure 4-2 Excess molar heat capacity of [ 2-PE(1) + H2O(2) ]divided by the multiplication of concentration of [ 2-PE (1) ] and [ H2O(2) ]45
Figure 4-3 Excess molar heat capacity of DEA(1) + MDEA(2): Points,exptl data; lines, calculated using eq.11 and eq.12 49
Figure 4-4 Excess molar heat capacity of DEA(1) + AMP(2):Points,exptl data; lines, calculated using eq.11 and eq.12 53
Figure 4-5 Excess molar heat capacity of DEA(1) + 2-PE(2):Points, exptl data; lines, calculated using eq.11 and eq.12 57
Figure 4-6 Excess molar heat capacity of DEA+MDEA, DEA+AMP, and DEA+2-PE at 50℃: Points, exptl data; lines, calculated using eq.11 and eq.12 58
Figure 4-7 Excess molar heat capacity of DEA(1) + MDEA(2) + H2O(3) as a function of x1 at x3 = 0.8 : Points,exptl data; lines, calculated using eq.13 66
Figure 4-8 Excess molar heat capacity of DEA(1) + MDEA(2) + H2O(3) as a function of x1 at x3 = 0.6: Points, exptl data; lines, calculated using eq.13 67
Figure 4-9 Excess molar heat capacity of DEA(1) + MDEA(2) + H2O(3) as a function of x1 at x3 = 0.4: Points, exptl data; lines, calculated using eq.13 68
Figure 4-10 Excess molar heat capacity of DEA(1) + MDEA(2) + H2O(3) as a function of x1 at x3 = 0.2: Points, exptl data; lines, calculated using eq.13 69
Figure 4-11 Excess molar heat capacity of DEA(1) + MDEA(2) + H2O(3) at 30℃: lines are constant excess molar heat capacities calculated using eq.13 70
Figure 4-12 Excess molar heat capacity of DEA(1) + MDEA(2) + H2O(3) at 40℃: lines are constant excess molar heat capacities calculated using eq.13 71
Figure 4-13 Excess molar heat capacity of DEA(1) + MDEA(2) + H2O(3) at 50℃: lines are constant excess molar heat capacities calculated using eq.13 72
Figure 4-14 Excess molar heat capacity of DEA(1) + MDEA(2) + H2O(3) at 60℃: lines are constant excess molar heat capacities calculated using eq.13 73
Figure 4-15 Excess molar heat capacity of DEA(1) + MDEA(2) + H2O(3) at 70℃: lines are constant excess molar heat capacities calculated using eq.13 74
Figure 4-16 Excess molar heat capacity of DEA(1) + MDEA(2) + H2O(3) at 80℃: lines are constant excess molar heat capacities calculated using eq.13 75
Figure 4-17 Excess molar heat capacity of DEA(1) + MDEA(2) + H2O(3) at 80℃: lines are constant excess molar heat capacities calculated using eq.13 76
Figure 4-18 Excess molar heat capacity of DEA(1) + MDEA(2) + H2O(3) at constant excess molar heat capacity = 2.0 J·mol-1·K-1 for temperatures from 30 to 100℃:lines are calaclated using eq.13 77
Figure 4-19 Excess molar heat capacity of DEA(1) + AMP(2) + H2O(3) as a function of x1 at x3 = 0.8 : Points, exptl data; lines, calculated using eq.13 84
Figure 4-20 Excess molar heat capacity of DEA(1) + AMP(2) + H2O(3) as a function of x1 at x3 = 0.6 : Points, exptl data; lines, calculated using eq.13 85
Figure 4-21 Excess molar heat capacity of DEA(1) + AMP(2) + H2O(3) as a function of x1 at x3 = 0.4: Points, exptl data; lines, calculated using eq.13 86
Figure 4-22 Excess molar heat capacity of DEA(1) + AMP(2) + H2O(3) as a function of x1 at x3 = 0.2 : Points, exptl data; lines, calculated using eq.13 87
Figure 4-23 Excess molar heat capacity of DEA(1) + AMP(2) + H2O(3) at 30℃: lines are constant excess molar heat capacities calculated using eq.13 88
Figure 4-24 Excess molar heat capacity of DEA(1) + AMP(2) + H2O(3) at 40℃: lines are constant excess molar heat capacities calculated using eq.13 89
Figure 4-25 Excess molar heat capacity of DEA(1) + AMP(2) + H2O(3) at 50℃: lines are constant excess molar heat capacities calculated using eq.13 90
Figure 4-26 Excess molar heat capacity of DEA(1) + AMP(2) + H2O(3) at 60℃: lines are constant excess molar heat capacities calculated using eq.13 91
Figure 4-27 Excess molar heat capacity of DEA(1) + AMP(2) + H2O(3) at 70℃: lines are constant excess molar heat capacities calculated using eq.13 92
Figure 4-28 Excess molar heat capacity of DEA(1) + AMP(2) + H2O(3) at 80℃: lines are constant excess molar heat capacities calculated using eq.13 93
Figure 4-29 Excess molar heat capacity of DEA(1) + AMP(2) + H2O(3) at 100℃: lines are constant excess molar heat capacities calculated using eq.13 94
Figure 4-30 Excess molar heat capacity of DEA(1) + AMP(2) + H2O(3) at constant excess molar heat capacity = 4.0 J·mol-1·K-1 for temperatures from 30 to 100℃: lines are calculated using eq.13 95
Figure 4-31 Excess molar heat capacity of DEA(1) + 2-PE(2) + H2O(3) as a function of x1 at x3 = 0.8 : Points, exptl data; lines, calculated using eq.13 101
Figure 4-32 Excess molar heat capacity of DEA(1) + 2-PE(2) + H2O(3) as a function of x1 at x3 = 0.6 : Points, exptl data; lines, calculated using eq.13 102
Figure 4-33 Excess molar heat capacity of DEA(1) + 2-PE(2) + H2O(3) as a function of x1 at x3 = 0.4 : Points, exptl data; lines, calculated using eq.13 103
Figure 4-34 Excess molar heat capacity of DEA(1) + 2-PE(2) + H2O(3) as a function of x1 at x3 = 0.2 : Points, exptl data; lines, calculated using eq.13 104
Figure 4-35 Excess molar heat capacity of DEA(1) + 2-PE(2) + H2O(3) at 30℃: lines are constant excess molar heat capacities calculated using eq.13105
Figure 4-36 Excess molar heat capacity of DEA(1) + 2-PE(2) + H2O(3) at 40℃: lines are constant excess molar heat capacities calculated using eq.13106
Figure 4-37 Excess molar heat capacity of DEA(1) + 2-PE(2) + H2O(3) at 50℃: lines are constant excess molar heat capacities calculated using eq.13107
Figure 4-38 Excess molar heat capacity of DEA(1) + 2-PE(2) + H2O(3) at 60℃: lines are constant excess molar heat capacities calculated using eq.13108
Figure 4-39 Excess molar heat capacity of DEA(1) + 2-PE(2) + H2O(3) at 70℃: lines are constant excess molar heat capacities calculated using eq.13109
Figure 4-40 Excess molar heat capacity of DEA(1) + 2-PE(2) + H2O(3) at 80℃: lines are constant excess molar heat capacities calculated using eq.13110
Figure 4-41 Excess molar heat capacity of DEA(1) + 2-PE(2) + H2O(3) at 100℃: lines are constant excess molar heat capacities calculated using eq.13111
Figure 4-42 Excess molar heat capacity of DEA(1) + 2-PE(2) + H2O(3) at constant excess molar heat capacity = 4.0 J·mol-1·K-1 for temperatures from 30 to 100℃: lines are calculated using eq.13 112
Figure 4-43 Excess molar heat capacity of DEA(1) + MDEA(2) + H2O(3), DEA(1) + AMP(2) + H2O(3) and DEA(1) + 2-PE(2) + H2O(3) at constant T = 50℃ and excess molar heat capacity = -4.0 J·mol-1·K-1: lines are calculated using eq.13
114


李夢輝, “氣體淨化處理”, 化工 1996, 43, 78-88.陳道達, “熱分析”, 渤海堂, 1992.劉曉芬, “醇胺水溶液比熱測量研究”, 中原大學化學工程研究所碩士論文, 1998.邱立峰, “醇胺水溶液比熱量測:純質及單一醇胺水溶液”, 中原大學化學工程研究所碩士論文, 1999.陳妍任,“混和醇胺水溶液之比熱量測:MEA/MDEA/H2O, MEA/AMP/H2O,及MEA/2-PE/H2O系統”, 中原大學化學工程研究所碩士論文, 2000.American Society for Testing and Materials, Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry. E1269-95.Astarita, G.; Savage, D. W.; Bisio, A. Gas Treating with Chemical Solvents; John-Wiley and Sons: New York, 1983.Belousov, V. P.; Panov, M. Y. Thermodynamic Properties of Aqueous Solutions of Organic Substances. CRC Presss: London, 1994. Brown, M. E., Introduction to Thermal Analysis: Techniques and applications; Chapman and Hall: New York, 1988.Chakravarty, T.; Phukan, U. K.; Weiland, R. H. Reaction of Acid Gases with Mixtures of Amines. Chem. Eng. Prog. 1985, 81, 32-36.Chen, Y. J.; Shih, T. W.; Li, M. H. Heat Capacity of Aqueous Mixtures of Monoethanolamine with N-Methyldiethanolamine. J. Chem. Eng. Data. 2001, 46, 51-55.Chen, Y. J.; Li, M. H. Heat Capacity of Aqueous Mixtures of Monoethanolamine with 2-Amino-2-methyl-1-propanol. J. Chem. Eng. Data. 2001, 46, 102-106.Chiu, L. F.; Liu, H. F.; Li, M. H. Heat Capacity of Alkanolamines by Differential Scanning Calorimetery. J. Chem. Eng. Data. 1999, 44, 631-636.Chiu, L. F.; Li, M. H. Heat Capacity of Alkanolamines Aqueous Solutions. J. Chem. Eng. Data. 1999, 44, 1396-1401.Ditmars, D. A.; Bernstein, G.; Chang, S. S.; Ishihara, S.; West, E. D. Enthalpy and Heat-Capacity Standard Reference Material — Synthetic Sapphire (□-Al2O3) from 10 to 2250 K. J. Res. Nat. Bur. Stand. 1982, 87, 159-163.Dow Chemical Co., Ethanolamines; Midland, Michigan, 1954.Haines, P. J. Thermal Methods of Analysis: Principles, Applications and Problems; Blackie Academic & Professional: New York, 1995.Hatakeyama, T.; Quinn, F. X. Thermal Analysis; Fundamentals and Applications to Polymer Science. John Wiley & Sons: New York, 1994.Hayden, T. A,; Smith, T. G. A.; Mather, A. E. Heat Capacity of Aqueous Methyldiethanolamiine Solutions. J. Chem. Eng. Data. 1983, 28, 196-197. Heldman, J. L.; Hwang, S. C.; Tsonopoulos, C. Heat Capacity of Coal Liquids. Ind. Eng. Chem. Process Des. Dev. 1984, 23, 577-586.Hwang, S. H.; DesMarteau, D. D.; Beyerlein, A. L.; Smith, N. D.; Joyner, P. The Heat Capacity of Fluorinated Propane and Butane Derivatives by Differential Scanning Calorimetry. Journal of Thermal Analysis. 1992, 38, 2515-2528.Jin, Y.; Wunderlich, B. Single Run Heat Capacity Measurements Ⅱ Experiments at Subambient Temperature. Journal of Thermal Analysis. 1990, 36, 1519-1543.Jin, Y.; Wunderlich, B. Single Run Heat Capacity Measurements Ⅲ Data Analysis. Journal of Thermal Analysis. 1992, 38, 2257-2272.Jin, Y.; Wunderlich, B. Single-Run Heat Capacity Measurement by DSC: Principle, Experimental and Data Analysis. Thermochim Acta. 1993, 226, 155-161.Kahrim, A; Mather, A. E. Enthalpy of Solution of Carbon Dioxide in Diethanolamine Solutions. The Canadian Journal of Chemical Engineering. 1980, 58, 660-662.Kohl, A. L.; Riesenfeld, F. C. Gas Purification; 4th ed.; Gulf: Houston, 1985.Lee, L. L. Thermodynamic Models for Natural Gas Sweetening Fluids, Annual report to the Gas Research Institute, University of Oklahoma, Norman, OK, 1994.Lide, D. R. Handbook of Organic Solvents; CRC Press: Boca Raton, 1995.Maham, Y.; Hepler, L. G.; Mather, A. E.; Hakin, A. W.; Marriott, R. A. Molar Heat Capacities of Alkanolamines from 299.1 to 397.8 K. J. Chem. Soc. Fara. Trans. 1997, 93, 1747-1750.Maham, Y.; Mather, A. E.; Hepler, L. G. Excess Molar Enthalpies of (Water + Alkanolamine) Systems and Some Thermodynamic Calculations. J. Chem. Eng. Data. 1997, 42, 988-992.Mathot, V. B. F.; Pijpers, M. F. J. Molecular Structure, Melting Behavior, and Crystallinity of 1-Octene-Based Very Low Density Polyethylenes(VLDPEs) as Studied by Fractionation and Heat capacity Measurements with DSC. Journal of Applied Polymer Science. 1990, 39, 979-994.Mehl, W. Chem. Fabrik., 1934a, 7, 240.Mehl, W. Chem. Zentr., 1934b, II, 1958.Minadakis, C.; Sabbah, E. R. Thermodynamique De Composes Azotes. VIII. Etude Thermochimique De La Diethanolamine Et De La Triethanolamine Et De La Reaction De Reduction De L’eau Par Celle-Ci. 1982, Thermochimica Acta, 55, 147-159.Nishimoto, Y.; Ichimura, Y.; Kinoshita, R.; Teramoto, Y.; Yoshida, H. Heat Capacity Measurement by Heat-Flux-Type DSC on Cooling and Heating Cycles at low Scan Rates. Thermochimica Acta. 1991, 179, 117-124.Osborne, N. S.; Sitmson, H. F.; Ginnings, D. C. Measurements of Heat Capacity and Heat of Vaporization of Water in the Range 0□C to 100□C. J. Res. Nat. Bur. Stand. 1939, 23, 197-260.Reid, R. C.; Prausnitz, J. M.; Poling, B. E. The properties of Gases & Liquids; 4th ed.; McGraw-Hill: New York, 1988. Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents, 4th ed.; Wiley: New York, 1986.Sartori, G.; Savage, D. W. Sterically Hindered Amines for CO2 Removal from Gases. Ind. Eng. Chem. Fundam. 1983, 22, 239-249.Sigmund, P. W.; Butwell, K. F.; Wussler, A. J. HS Process Removes H2S Selectively. Hydrocarbon Process. 1981, 118-124.Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; Nguyen, A. Vapor Pressure, Heat Capacity, and Density along the Saturation Line, Measurements for Dimethyl Isophthalate, Dimethyl Carbonate, 1,3,5-Triethylbenzene,Pentafluorophenol, 4-tert-Butylcatechol, α-Methylstyrene, and N, -Bis(2-hydroxyethyl) ethylenediamine. J. Chem. Eng. Data. 1997, 42, 1008-1020.Texaco Chemical Co., Gas Treating Data Book, 1969.Union Carbide Chemical Co., Gas Treating Chemicals, Vol. 1, 1957.Weiland, R. H.; Dingman, J. C.; Cronin, D. B. Heat capacity of Aqueous Monoethanolamine, Diethanolamine, N-Methyldiethanolamine, and N- Methyldiethanolamine-Based Blends with Carbon Dioxide. J. Chem. Eng. Data. 1997, 42, 1004-1006.Wunderlich, B. Specific Heat of Polyethylene Single Crystals. The Journal of Physical Chemistry. 1965, 69, 2078-2081.Wunderlich, B.; Dole, M. Specific Heat of Synthetic High Polymers. Ⅷ. Low Pressure Polyethylene. Journal of Polymer Science. 1957, 3, 201-213.Wunderlich, B.; Jin, Y.; Boller, A. Mathematical Description of Differential Scanning Calorimetry Based on Periodic Temperature Modulation. Thermochim Acta. 1994, 238, 277-293.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊