(3.235.139.152) 您好!臺灣時間:2021/05/11 06:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許家銘
研究生(外文):Chia-Ming Hsu
論文名稱:以電場掃流超過濾分離蛋白質混合液
論文名稱(外文):crossflow electro-ultrafiltration of binary protein mixtures
指導教授:莊清榮莊清榮引用關係
指導教授(外文):C.J.Chuang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:87
中文關鍵詞:蛋白質混合液電場掃流超過濾
外文關鍵詞:electric fieldultrafiltratoncrossflow
相關次數:
  • 被引用被引用:8
  • 點閱點閱:81
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
目前超過濾已廣泛被應用在蛋白質的濃縮分離,常面臨的問題除了膜面及膜孔內結垢導致濾速甚低外,對於蛋白質混合液之選擇性分離亦常沒有達到預期之效能,這些皆限制了超過濾的應用。若利用蛋白質本身電荷及電性易藉由pH調整的特性,於過濾中加入電場,對濾速提昇及選擇性分離之改善應有助益,但至目前此方面之瞭解仍有限。
為探討以電場掃流超過濾分離蛋白質之操作特性,本研究以溶菌脢(Ly)與血紅蛋白(Hb)溶液在平板式掃流過濾器進行實驗,分析溶液pH值、電場強度、及膜孔大小等對穩定濾速、蛋白質穿透率與選擇率等之影響。
以100KDa PES濾膜進行過濾,在無電場作用下,Ly於pH=9.0近等電點濾速較低,穿透率較大;Hb於pH=5.0近等電點濾速則較大,穿透率同時也較高;混合液之濾速由與膜孔徑較接近的蛋白質所控制。於電場作用下,帶負電荷之Hb的電泳係遠離膜面,故其濾速明顯大於未施加電場者,且穿透率也隨電場強度增大而降低;在實驗的pH範圍內,Ly之電泳雖皆朝向膜面,但因分子量較小易通過濾膜,故濾速與未施加電場者相近。在pH=7與9時,混合液中蛋白質的電泳方向相反,故隨電場強度增加,蛋白質選擇率隨之上升。
以10KDa PES濾膜進行過濾,在pH=7與9 Hb帶負電荷時,其穩定濾速隨電場強度增加而提高;而微帶正電之Ly者則不隨電場強度而改變,由於Ly較易滲入膜孔,故無論是否施加電場,其穩定濾速皆小於Hb者。帶負電荷之Hb穿透率隨電場強度增加而下降,正電荷Ly則隨電場強度增加而些微上升;混合溶液Hb幾乎沒有穿透濾膜,故可得甚高之選擇率。
以0.01mm較大膜孔進行蛋白質混合液選擇性分離,電場強度施加至4000V/m,選擇率並沒有大幅上升,直覺上電場強度對蛋白質選擇性沒有明顯的幫助,但實際上此時所需外加電壓甚小,可預期若能克服實驗裝置的限制,進一步增大電場強度至帶較大介達電位之蛋白質的臨界電場,應可有效達篩選分離的效果。
ABSTRACT
One of the major bottlenecks in the ultrafiltration process is the seriously flux decline due to the membrane fouling and/or the very low selectivity in fractionating the protein mixtures. The so-called electro-ultrfiltration is a process developed to assist the conventional ultrafiltration by applying an electric field to reduce the fouling of the membrane.
In order to investigate the separation performance of protein mixtures with electro-ultrafiltrations, experiments with either single solutions (lysozyme(Ly) and hemoglobin(Hb)) or the binary mixed solutions by a flat —channel filter was conducted to show the effect of electric field strength on the filtration rate and selectivity. In addition, the effects of solution pH and pore size of membranes on the performance of the filtration operation were also discussed.
For the cases using 100K membrane, when no electric field was applied both proteins in single solution have the largest transmission at pH near each pI. At the pH , the steady filtration rate of Ly solution is smallest, however, the Hb solution produces largest filtration rate which arises from the formation of large aggregates and hence a more porous deposited layer. When electric field was applied, the electrophoretic migration of negatively charged Hb (at pH 7~ 9) is away from the membrane and the Ly which Mw is much smaller than the MWCO of the membrane has a very small electrophoretic motion toward to the membrane surface. Both the filtration rate and the selectivity of the mixed solutions increase with the electric field strength.
For the cases with 10 K membrane, the filtration rate of negatively charged Hb solutions increases almost linearly with the electric field strength. Although the MW. of Hb is about 6.7 times the MWCO of the membrane, there is still about 10% transmission for filtering single Hb solution. However, the transmission is decreased to be negligible in filtering the mixed solutions and thus a 70~80 high selectivity was obtained. The selectivity is increased with the electric field strength.
For the cases with 0.01mm membrane, at pH 7 where both proteins have opposite surface charge, the selectivity increases from 1.2 to 3.0 as the effective electric field strength in a range from 0 to 152 V/m. It may misleads that the larger pore size membrane is not suitable for proteins fractionation even with the application of electric field. But in fact, only 0~60V was supplied by the power source for affording such an electric field strength. If further increase of electric field strength is applied, a large selectivity can be obtained.
目錄
中文摘要……Ⅰ
英文摘要…………………………………………………………..Ⅲ
誌謝………………………………………………………………..Ⅴ
目錄……Ⅵ
圖表索引……Ⅷ
第一章 緒論……1
第二章 文獻回顧…………………………………………………4
2-1 掃流過濾…………………………………………………………4
2-1-1 蛋白質溶液膜結垢之探討……4
2-1-2 蛋白質穿透率與選擇性分離……8
2-2 電場掃流過濾……11
2-2-1 電場掃流微過濾……12
2-2-2 電場掃流超過濾……14
第三章 理論背景……17
3-1 膜過濾之濃度極化模式……17
3-2 膜過濾之凝膠極化模式……19
3-3 粒子電動(Electrokinetic)方程……21
3-4 電場作用下膜過濾濃度極化模式……23
3-5 溶質穿透率……25
第四章 實驗設備及步驟……28
4-1實驗材料……28
4-2實驗裝置……28
4-3實驗儀器……29
4-4實驗步驟……32
4-4-1 建立溶液中蛋白質濃度與紫外線-可見光
度吸收度之標準關係線……………………. …….32
4-4-2 電場掃流過濾實驗…… 33
第五章 結果討論…… 38
5-1 蛋白質溶液的pH值對過濾之影響…… 38
5-1-1 溶液pH值對穩定濾速的影響…… 37
5-1-2 溶液pH值對蛋白質穿透率之影響…… 43
5-1-3 溶液pH值對蛋白質膜分離選擇率之影響…………..45
5-2 電場強度對過濾之影響…… 45
5-2-1電場強度對濾速之影響… …45
5-2-2電場強度對穩定濾速之影響…… 47
5-2-3電場強度對蛋白質穿透率之影響…… 57
5-2-4電場強度對蛋白質選擇率之影響…… 57
5-3 膜材孔徑對蛋白質電場超過濾的影響…… 61
5-3-1 10KDa濾膜之過濾分離…… 61
5-3-2 0.01μm濾膜之過濾分離…… 69
第六章 結論…… 75
符號說明…… 77
希臘符號…… 79
參考文獻…….80
附錄一…… 86
附錄二…….87
參考文獻Allert, J.T. and R.D. Harfer, ”Adsrption of lysozyme and ovalbuminby clay:effect of clay suspension pH and clay mineral type”,Soil.Sci,115,130,(1973)Akay, G. and R.J.Wakeman, ”Electric field enhanced crossflow microfiltration of hydrophobically modified water soluble polymers”, J. of Membrane Sci.,131, pp229-236,(1997)Belfort, G., R. H. Davis and A.L. Zydney, "The Behavior of Suspensions and Macromolecular Solutions in Crossflow Microfiltration", J. of Membrane Sci., 96, pp1~58, (1994)Balakrishnon, M. and G.P. Agarwal, "Protein fractionation in a vortex flow filter.I: Effect of system hydrodynamics and solution environment on single protein transmission ", J. of Membrane Sci., 112, pp47~74, (1996)Chan, R.,V. Chen, “The effects of electrolyte concentration and pH on protein aggregation and deposition”, J. of Membrane Sci., 185, pp177~192, (2001)Chilton, T. H. and A. P. Colburn, "Mass transfer (absorption) coefficient —production from data on heat transfer and fluid friction", Ind. Eng. Chem.,26,pp1183, (1934)Causserand, C., Y. Kara and P. Aimar, ”protein fractionation using secondary membrane formed by deposited clay layer”, world filtration conference,(2000) Douglas, B. B. and A. L. Zydney, ”Effect of Solution pH on Protein Transport Through Ultrafiltration Membrane” Biotechnology and Bioengineering,Vol.64, No.1, pp27-37,(1999)Iritani, E., Y. Mukai and T. Murase, ”Separation of binary Protein Mixtures by Ultrafiltration”, 7th World Filtration Congress Fane, A.G., P. H. Hodgson and G. L. Leslie, "Crossflow Microfiltration on Biofluids and Biomass Perspectives", 6th World Filtration Congress, NAGOYA, pp5~13, (1993)Fane, A.G., C. J. D. Fell and A. G. Waters, "Ultrafiltration of Protein Solutions Through Partially Permeable Membranes-The Effect of Adsorption and Solution Environment ", J. of Membrane. Sci., 16, pp211~224,(1983)Frenander,U. and A.S. Jonsson, "Cell Harvesting by Cross-Flow Microfiltration Using a Shear-Enhanced Module", Biotechnology and Bioengineering, 52(3), Nov5, pp397 ~403, (1996)Ghost, R. and Z.F. Cui, ”Simulation study of the fractionation of proteins using ultrafiltration” J. of Membrane Sci., 180,pp 29-36,(2000)Groen, S. L., "The Hydrodynamic Force Resisting the Approach of a Sphere to a Plane Permeable Wall" ,J. Colloid Interface Sci., 69, pp78~85, (1979)Henry, J. D., L. F. Lawler and Alex K. C. H., "A Solid/ Liquid Separation Based on Cross Flow and Electrofiltration ", AIChE J., 23, pp851~859, (1977)Huisman, I. H., D. Elzo, E. Middelink and A.C. Tragardh " Properties of the cake layer formed during crossflow microfiltration ", Colloids Surfaces A: Physicochem. Eng. Aspects,138,pp265~281,(1998)Hanna, M. Huotari, I. H. Huisman and G. Tragardh “Electrically enhanced crossfow membrane filtration of oily waste water using the membrane as a cathode”, J. of Membrane Sci.,156, pp49-60,(1999)Hiemenz, P.C. “Principles of Colloid and Surface Chemistry” ,chap 13 ,pp737~790 ,(1986)Huisman, I. H. , P. Pradanos and A. Hernandez, “The effect of protein-protein and protein-membrane interactionon membrane fouling in ultrafiltration”, J. of Membrane Sci.,179, pp79-90,(2000)Iritani, E., Y. Mukai and Y.Kiyotomo,”Effects of electric field on dynamic behaviors of dead-end inclined and downward ultrafiltration of protein solution”, J. of Membrane Sci.,164, pp51-57,(2000)Iritani, E. , Y. Mukai and T. Murase," Separation of Binary Protein Mixtures by Ultrafiltration" ,Flltration& Separation , pp967~973, Nov., (1997)Liew, M.K.H., A.G. Fane and P.L. Rogers, "Fouling Effect of Yeast Culture withAntifoam Agent on Microfilters", Biotechnology and Bioengineering, 53, pp10~16, (1997)Mueller, J. and R.H.Davis, ”Protein fouling of surface-modified polymeric microfiltration membranes”, J. of Membrane Sci,116,pp47-60,(1996)Mukai, Y., E. Iritani and T. Murase, "Effect of protein charge on cake properties in dead-end ultrafiltration of protein solutions", J. of Membrane Sci., 137, pp271~275, (1997)Mignard, D. and D.H. Glass, “a mass-transfer model for fouling during the crossflow ultrafiltration of protein :influence of pH and ionic strength”, world filtration conference,(2000) Okada, K. and Y. Nagase, "Correlations of Filtration Flux Enhanced by Electric Fields in Crossflow Microfiltration", J. of Chem. Eng. Japan, 30, pp1054~1058, (1997)Pier, G. R. and T. Caravaggio,” Isoelectric point and molecular weights of protein”, Journal of chromatography,127,pp1~28,1976 Palecek, S.P. and A.L. Zydney, ”Intermolecular electrostatic interaction and their effect on flux and protein deposition during protein filtrtion”, Biotechnol.Prog,10,207,(1994)Pradanos, P. and A. Hernandez, "Pore Size Distributions of Polysulfonic UF Membranes and Protein Adsorption", Separation Science and Technology., 31(17), pp2419 ~2441, (1996)Pupunat, L., G.M. Rios, R. Joulie, M. Persin and G. Pourcelly, "Electronanofiltration: A New Process for Ion Separation " , Separation Science and Technology, 33(1) ,pp67~81, (1998)Robertson, B.C. and A.L. Zydney, ”Protein adsorption in asymmetric ultrafiltraion membranes with highly constricted pores”, J. Colloid Interface Sci,134,563,(1990) Radovich, J. H. and B. Behnam, "Steady-State Modeling of Electroultrafiltration at Constant Concentration", Separation Science and Technology, 20(4), pp315~329, (1985)Sannier, F., C. Lecoeur, Q. Zhao, I. Garreau and J.M. Piot“Separation of Hemoglobin and Myoglobin from Yellowfin Tuna Red Muscle by Ultrafiltration : Effect of pH and ionic strength”, Biotechnology and Bioengineering,Vol.52, pp501-506,(1996)Stuart, M. B. and M. M. Meagher, ”Separation of soluble protein from inclusion bodies in Escherichia coli lysate using crossflow microfiltration”, J. of Membrane Sci.,166,pp137-146,(2000) Su, T.J., J.R. Lu, Z.F. Cui and R.K. Thomas, “Fouling of ceramic membranes by albumins under dynamic filtration conditions”, J. of Membrane Sci.,173, pp167-178,(2000)Turkson, A.K., J. A. Mikhlin and M. E. Weber, "Dynamic Membranes.1.Determination of Optimum Formation Conditions and Electrofiltration of Bovine Serum Albumin with a Rotating Module", Separation Science and Technology, 24, pp1261~1291, (1989)Turkson, A. K., J. A. Mikhlin and M. E. Weber, "Dynamic Membranes.Ⅱ.Concentration Effects on Reflection Coefficient and Specific Resistance of Bovine Serum Albumin“Gel”Layer",Separation Science and Technology, 25(1&2), pp31~44, (1990)Visvanathan, C.and R. B. Aim, "Application of an Electric Field for the Reduction of Particle and Colloidal Membrane Fouling in Crossflow Microfiltration", Separation Science and Technology, 24, pp383~398, (1989)Wershaw, R.L., K.A. Thorn, D.J. Pinckney, P. MacCarthy, J.A. Rice and H.F. Hemong, ”Application of a membrane model to the secondary structure of humic substrate in peat”, Peat and Water, pp133-157, (1986)Wakeman, R. J.and M. N. Sabri, "Utilizing Pulsed Electric Fields in Crossflow Microfiltration of Titania Suspensions", Trans IChemE, 73, pp455~463, (1995)Wakeman, R.J.and E. S. Tarleton, "Membrane Fouling Prevention in Crossflow Microfiltration by the Use of Electric Fields", Chem. Eng. Sci., 42, pp829~842, (1986)Wakeman, R. J. and E. S. Tarleton, "An Experimental Study of Electroacoustic Crossflow Microfiltration", Trans IChemE., 69, pp386~397, (1991)Yuan, W. and A. L. Zydney,”Humic acid fouling during microfiltrtion”, J. of Membrane Sci , 157 ,pp1-12 ,(1999)Yukawa, H., K. Shimura, A .Suda and A. Maniwa, "Cross Flow Electro-Ultrafiltration for Colloidal Solution of Protein", J. of Chem.Eng.Japan, 16(4), pp305~311, (1983)呂維明和呂文方,"過濾技術", 高立圖書,台北(1994)朱勝忠, "掃流過濾機構之研究", 博士學位論文, 台灣大學化工所 (1988)莊清榮, "迴轉盤式掃流過濾機構之研究", 博士學位論文, 台灣大學 (1988)"生技產品分離回收技術研習會講義",經濟部工業局、財團法人生物技術開發中心 (1992)方俊為, "懸浮液離子濃度對電場掃流過濾之影響",碩士學位論文,中原大學化工所 (1997)龔文富, "以電場掃流過濾分離酵母菌懸浮液",碩士學位論文,中原大學化工所 (1998)謝旻樺, "以電場掃流超過濾分離牛血清蛋白溶液",碩士學位論文,中原大學化工所 (1999)林東宥, "微過濾程序中蛋白質結垢行為之探討",碩士學位,台灣大學化工所(2000)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔