(3.238.96.184) 您好!臺灣時間:2021/05/08 21:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:胡登貴
研究生(外文):Teng-Kuei Hu
論文名稱:單一散度中空微球的製備
論文名稱(外文):Preparation of Monodisperse Hollow Microsphere
指導教授:許克瀛
指導教授(外文):Keh-Ying Hsu
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:86
中文關鍵詞:單一散度中空微球孔隙性粒種乳化聚合稀釋劑
外文關鍵詞:monodispersehollow microsphereporosityseeded emulsion polymerizationdiluent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:76
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

利用粒種乳化聚合法,製備微米級單一散度中空及孔隙性的聚2-羥乙胺基丙烯酸酯-乙二醇二甲基丙烯酸酯(HEMA-EGDMA copolymer)共聚合顆粒。由稀釋劑的種類及用量、交聯劑/單體比例、及反應時間等因素,探討對顆粒表面與內部結構、殼層厚度、比表面積的影響。並利用電子顯微鏡觀察反應過程中顆粒表面形態及內部結構,以尋求影響顆粒結構的主因並推測中空結構形成的機制。
由實驗結果得知,使用良溶劑甲苯(>2ml)當做稀釋劑情況下,可獲得單一散度中空微球;而以不良溶劑正辛醇(>0.5ml)當做稀釋劑,可獲得高孔隙性聚合顆粒。另外,由甲苯之脫附釋放實驗,甲苯的釋放速率和中空微球殼層厚度、殼層結構、中空度有關。當殼層厚度增加或結構愈緻密,甲苯的釋放速率下降,由於具有中空結構,故釋放甲苯會有一段時間為固定不變的速率。高孔隙性顆粒因為表面與內部結構皆由微球堆積組成,且不具中空結構無法儲存較多的甲苯,所以釋放速率較快。


Micro-sized monodisperse hollow or porous copolymer particles of poly(2-hydroxyethylmethacrylate-co-Ethylene glycol dimethacrylate) with its size about , will be prepared by using seeded emulsion polymerization. The effects on the properties of the particles, such as : surface and interior structure, shell thickness, specific surface area,……etc., were studied by changing the recipes and polymerization conditions, such as : kind and amount of diluents, the ratio of the monomer to crosslinking agent, and polymerization time,……etc. By using the electron microscope to observe the surface and interior structure of obtained polymer particles during polymerization courses, the major effect on the surface and interior morphology on the polymer particles was investigated, and the mechanism of hollow particles formation was also proposed and testified.
From the experimental results, it can be found that: (1) By using good solvent, toluene, to the obtained polymer as diluent, when the ratio of toluene to the monomer and crosslinking agent mixture is higher than 5/7, the monodisperse hollow particles can be prepared. (2) By using poor solvent, n-octanol, as diluent, only porous copolymer particles can be obtained. From the experiment of the drying of the toluene from highly swollen and saturated hollow particles, the rate of toluene released is conformed and has relationship with their shell thickness, shell and surface structure, and the inside void volume in the hollow particles. If the thickness of shell increases or the surface and shell structure is more dense, the rate of toluene released decrease. For the case of porous copolymer particles prepared by using nonsolvent as diluent, the the surface and interior is formed by aggregated the globules and is loose, so the released rate is faster than that of hollow particles. As the amount of corsslinking agent increases, the number of the crosslinking node and the specific surface area of copolymer particles also increases. When the amount of HEMA increases, the copolymer particles become irregular shape like raisin due to the low Tg of HEMA.


目錄
中文摘要………………………………………………………………..Ⅰ
英文摘要……………………………………..…………………………Ⅱ
目錄……………………………………………………………………..Ⅲ
表目錄…………………………………………………………………..Ⅴ
圖目錄…………………………………………………………………..Ⅵ
第一章 緒論…………………………………………………………….1
1-1前言………………………………………………………………1
1-2 研究動機………………………………………………………...2
第二章 文獻回顧……………………………………………………….3
2-1 單一散度粒種之製備……………………………………….…..4
2-2 乳化聚合法製備聚合顆粒……………………………………...6
2-3 中空微球的製備………………………………………………...8
第三章 實驗理論………………………………………………………12
3-1 分散聚合法……………………………………………………..12
3-2 粒種乳化聚合法………………………………………………..12
3-3 孔隙之形成機構………………………………………………..13
3-4 穩定劑效應……………………………………………………..13
3-5 溶劑對孔隙的效應……………………………………………..15
3-6 萃取……………………………………………………………..16
第四章 實驗部份………………………………………………………20
4-1 實驗藥品………………………………………………………..20
4-2 實驗儀器設備…………………………………………………..22
4-3 實驗步驟及方法………………………………………………..24
4-3-1 實驗步驟……………………………………………………24
4-3-2 實驗方法……………………………………………………25
4-3-3 切片染色程序………………………………………………27
4-4 掃瞄式電子顯微鏡……………………………………………..29
4-5 穿透式電子顯微鏡……………………………………………..30
4-6 比表面積之測量………………………………………………..31
4-7 壓汞式孔隙測量………………………………………………..34
4-8 孔隙度之量測…………………………………………………..36
第五章 結果與討論……………………………………………………44
5-1 粒種的製備……………………………………………………..44
5-2 稀釋劑種類對於共聚物顆粒結構之影響……………………..44
5-3 反應時間對於共聚物顆粒結構之影響………………………..47
5-4 稀釋劑用量對於共聚顆粒結構之影響………………………..51
5-5 交聯劑/單體配比對於共聚顆粒結構之影響………………….53
5-6 稀釋劑種類對於溶劑(Toluene)釋放的影響…………………..55
5-7 萃取對於共聚顆粒物性之探討………………………………..57
第六章 結論……………………………………………………………59
第七章 參考文獻…………………………………………………..…..61
表目錄
Table 1 Recipes of polystyrene particles by dispersion polymerization
………………………………………………………………64
Table 2 The solubility parameter of ingredient using as a seed……...64
Table 3 T-series recipes to prepare hollow poly(HEMA-co-EGDMA) particles……………………………………………………..65
Table 4 S-series recipes to prepare hollow poly(HEMA-co-EGDMA) particles……………………………………………………..65
Table 5 SS-series recipes to prepare hollow poly(HEMA-co-EGDMA) particles……………………………………………………..66
Table 6 P-series recipes to prepare hollow poly(HEMA-co-EGDMA) particles……………………………………………………..66
Table 7 PP-series recipes to prepare hollow poly(HEMA-co-EGDMA) particles……………………………………………………..67
Table 8 3P-series recipes to prepare hollow poly(HEMA-co-EGDMA) particles……………………………………………………..67
Table 9 SS-H-series recipes to prepare hollow poly(HEMA-co-
EGDMA) particles………………………………………….68
Table 10 The properties of the porous poly(HEMA-co-EGDMA) particles perpard during polymerization course………….…69
Table 11 The properties of the porous poly(HEMA-co-EGDMA) particles perpard during polymerization course………….…70
Table 12 The properties of the porous poly(HEMA-co-EGDMA) particles perpard during polymerization course………….…71
Table 13 Effect of the corsslinking agent/ monomer ratio on the properties of the P (EGDMA-co-HEMA) hollow particles
………………………………………………………….…...72
圖目錄
Fig. 1 Particle size distribution of seed prepared by dispersion polymerization ……………………………………………..…73
Fig. 2 TEM photograph of the polystyrene seeds……………………74
Fig.3 SEM photographs of polymer particles prepare by different type of the diluents : (A) T4 polymer particles, 10,000□; (B) 3P4 polymer particles, 12,000□……………………………………..74
Fig. 4 SEM photographs of hollow and porous particles prepare by different type of the diluents : (A) SS12 hollow particles,
10,000□; (B) 3P12 porous particles, 12,000□………………..…75
Fig. 5 TEM photographs of the internal structure of hollow and porous particles with different type of the diluents: (A) SS8 hollow particles, 3,000□; (B) 3P8 porous particles, 4,000□……76
Fig. 6 SEM photographs of the surface morphology of hollow particles prepared during polymerization course : (A) 4 hours, SS4 particles, 12,000□; (B) 6 hours,SS6 particles, 10,000□; (C) 8 hours , SS8 particles, 10,000□; (D) 12 hours,SS12 particles, 10,000□; (E) 24 hours,SS24 particles, 8,000□………………….77
Fig. 7 TEM photographs of the internal structure of hollow particles prepared during polymerization course : (A) 4 hours, SS4 particles, 6,000□; (B) 8 hours, SS8 particles, 5,000□; (C) 24 hours, SS24 particles, 5,000□………………………………………….78
Fig. 8 The proposal of the formation mechanism of micorn-sized monodispersed hollow P(HEMA-co-EGDMA) particles by seeded emulsion polymerization.【note: “ “ PS seed polymer, “ “ Surfactant, “-”diluent solvent, “M” Monomer, “X” Cross-linking agent, “P” P(HEMA-EGDMA) polymer】………79
Fig. 9 SEM photographs of the surface morphology of porous particles prepared during polymerization course : (A) 4 hours, 3P4, 2,500□; (B) 6 hours, 3P6, 10,000□; (C) 8 hours, 3P8, 13,000□; (D) 12 hours, 3P12, 15,000□; (E) 18 hours, 3P18, 13,000□………………………………………………………...80
Fig. 10 TEM photographs of the internal structure of porous particles prepared during polymerization course : (A) 6 hours, 3P6 particles, 6,000□; (B) 12 hours, 3P12 particles, 4,000□; (C) 24 hours, 3P24 particles, 3,000□…………...…….………………..81
Fig. 11 TEM photographs of the internal structure of hollow particles prepared under different amount of the Toluene added : (A) T8 particles, 6,000□; (B) S8 particles,5,000□; (C)SS8particles, 5,000□……………………………………..………………….…82
Fig. 12 TEM photographs of the internal structure of porous particles prepared under different amount of the n-Octanol added :(A) P4 particles, 2,000□; (B) PP4 particles, 2,000□……………………83
Fig. 13 TEM photographs of the internal structure of the hollow particles prepared under various EGDMA/HEMA ratios : (A) 3.4/0.1, SS-H-0.1 particles, 6,000□; (B) 2.5/1, SS-H-1 particles, 5,000□; (C) 1/2.5, SS-H-2.5 particles, 6,000□; (D) 0.1/3.4, SS-H-3.4 particles,6,000□…………………………...…………………….84
Fig. 14 Weight loss and releasing rate curves for drying of particles at 20℃ measured by TGA from hollow [S24] and porous [3P24] particles………………………..……………………………...85
Fig. 15 IR-spectra of the HEMA-EGDMA copolymer particles before extraction………………………………………………….…..86


1. Sober. H. A ; Peterson. E. A., J. Am.Chem. Soc., 76, 1711(1954).2. R. Arshady, H. of Chromatography, 586, 181-197(1991).3. R. Arshady, H. of Chromatography, 586, 199-219(1991).4. T. Ellingsen and O.Aune, H.of Chromatography, 535, 147-161(1990).5. Q. C. Wang, K. Hosoya, F. Svec, and J. M. J. Frechet, Anal. Chem., 64, 1232- 1238(1992).6. T. Ellingsen and O. Aune, A. Berge, L. Kilaas, R. Schmid, P. Sternstad, J. Ugelstad, S. Hagne, E. Wang and L. Johansen, Makromaol. Chem, Macromol. Symp., 70/71, 315-326, (1993).7. Linda L. Lloyd, J. of Chromatography, 544, 201-207(1991).8. C. M. Cheng, F. J. Micale, J. W. Venderhoff, and M. S. El-Aasser, J. of Polym. Sci. Part A : Polym. Chem., Vol.30, 235-244(1992).9. C. M. Cheng, J. W. Venderhoff, and M. S. El-Aasser, J. of Polym. Sci. Part A : Polym. Chem., Vol.30, 245-256(1992).10. V. Smigol and F. Sevc, J. of Appli. Polym. Sci., Vol.46, 1439-1448(1992).11. V. Smigol and F. Sevc, J. of Appli. Polym. Sci., Vol.48, 2033-2039(1993).12. Keith E. J. Barrett, Br. Polym. J., Vol. 5, 259-271(1973).13. K. P. Lok and C. K. Ober, Can. J. Chem., 63, 209(1985).14. C. K. Ober, K. P. Lok, and, M. L. Hair, J. Polym.Sci.:Polym. Lett. Ed., 23, 103(1985).15. C. M. Tesng, Y. Y. Lu, M. S. El-Aasser, and H.W.Vanderhoff, J. Polym. Sci. Part A: Polym. Chem. Ed., Vol. 24, 2995-3007(1986).16. Kazuhiko Takahashi, Shigeo Miyamori, Hiroshi Uyama, and Shiro Kobayashi, J. Polym. Sci. Part A: Polym. Chem., Vol. 34, 175-182(1996).17. Kun Cao, Hian Yu, Bo-Geng Li, Bao-Fang Li, Zu-Ren Pan, Chem. Eng. J., Vol. 78, 211-215(2000).18. H. R. Sheu, M.S. El-Aasser, and H.W.Vanderhoff, J. Polym. Sci. Part A: Polym. Chem., Vol. 28, 629-651(1990).19. S. Shen, M. S. El-Aasser, V. L. Dimonie, J. W. Vanderhoff, and E. Sudol, J. Polym. Sci. Part A: Polym. Chem., Vol. 29, 857-867(1991).20. C. M. Cheng, J. W. Vanderhoff, and M. S. El-Aasser, J. Polym. Sci. Part A: Polym. Chem., Vol. 30, 245-256(1992).21. A. Tuncel, M. Tuncel and B. Salih, J. of Applied Polym. Sci., Vol. 71, 2271-2290(1993).22. A. Tuncel, J of Applied Polym. Sci., Vol. 71, 2291-2302(1993).23. A. B. Moustafa, A. Faizalla, J. Appl. Polym. Sci., Vol. 78, 1209-1215(2000).24. Ahmet Akar and Haluk Ersen, Eur. Polym. J. Vol. 19, 279(1983).25. Young-Do Jo, Kyo-Shik Park, Jou-Hyeon Ahn, and Son-Ki Ihm, Eur. Polym. J. Vol. 32, No., 8, 967-972(1996).26. Xiang Zheng Kong, Eli Ruckenstein, J. of Applied Polym. Sci., Vol. 71, 1455- 1460(1999).27. Nobuyuki Itou, Tooru Masukawa, Ichirou Ozaki, Masayuki Hattori, Kiyoshi Kasai Colloids and Surfaces A: Physiochemical and Engineering Aspects, Vol. 153, 311-316(1999).28. Masayoshi Okubo, Hideto Minami, Tsuyoshi Yamashita, Macromol. Symp. Vol. 101, 509-516(1996).29. M. Okubo and H. Minami, Colloid Polym. Sci., Vol. 275, 992-997(1997).30. M. Okubo, H. Minami, Y. Yamamoto, Colloids and Surfaces A: Physiochemical and Engineering Aspects, Vol. 153, 405-411(1999).31. M. Okubo, H. Minami, Y. Yamamoto, Colloid Polym. Sci., Vol. 279, 77-81 (2001).32. Polymer Handbooks.33. H. Kuroda and Z. Osawa, Eur. Polym. J., Vol. 31, No. 1, 57-62(1995).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔