(3.238.173.209) 您好!臺灣時間:2021/05/16 05:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡淑霞
研究生(外文):Shu-Sha Tsai
論文名稱:紅外光感測器檢測水溶液中揮發性化合物之方法開發
論文名稱(外文):Development of Infrared Sensing Method for the Determination ofVolatile Compounds in Aqueous Solutions
指導教授:楊吉斯
指導教授(外文):Jyisy Yang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:88
中文關鍵詞:上空間微量萃取法揮發性有機化合物衰減式全反射紅外光固相微量萃取法
外文關鍵詞:ATRHSSPMEVOCsSPMEInfrared(IR)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:95
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

摘要
本研究主要探討以上空間固相微量萃取法結合紅外線光學感測器,偵測水中揮發性有機質之可行性,紅外光之感測模式為減弱式全反射法,其晶體經疏水性高分子(聚異丁烷)覆膜後,便可以有效吸附由水中揮發上來之有機質,如此便可直接感測吸附有機質之紅外光譜圖,為了解影響此偵測法之變因,研究中以數種高揮發性樣品:
Chloroform,TCE,Chlorobenzene,Toluene,Benzene,1-CN為指標分子分別對變因如攪拌、加溫、上空間體積、覆膜體積、樣品體積等加以探討結果證明顯示攪拌可以有效提高分析物之訊號,並有效縮短平衡時間至15分鐘以內另外覆膜厚度受限於紅外光之穿透深度影響,因此最佳覆膜之疏水層物質之濃度為2%,另外溫度亦能有效提高揮發有機質之效率。為受限紅外光晶體材質,溫度只能加至60°左右。因此更探討以加入冷卻感測晶體的萃取樣品之方式,進而提高偵測之靈敏度。由於冷卻的效應可降低感測晶體對於溫度所造成分配係數的改變,所以在本篇論文的第二階段實驗即加入冷卻效應並以其最佳化之實驗條件測量指標分子,其靈敏度可至數十個ppb,並具良好之線性關係,濃度範圍由5ppm~200ppm,R-square皆可高達0.99以上。且更可應用在偵測揮發性較低的樣品 ,所以本實驗方法可以有效應用至環境檢體上。


ABSTRACT
The method based on combination of the technique of headspace solid phase microextraction (HSSPME) to that of attenuated total reflectance (ATR) infrared (IR) sensing probe was developed toward detection of volatile compounds in aqueous solutions. This method can effectively eliminated the problems associated in soaking type of probes, such as pilling hydrophobic film from the sensing elements and the variation of analytical signals caused by the matrix composition. A specially designed sample cell was proposed for this purpose, which allowed to examine the performance of HSSPME/ATR-IR method and its related factors, such as the effect of agitation, headspace volume, sample volume, and temperature. Results showed that a fast speed was observed for the detection of VOCs in the HSSPME/ATR-IR method. The typical time for reaching the maximum analytical signals was around 20 minutes. Much stronger signals were obtained by applying agitation to the aqueous solution and it influences more effectively for lower volatility compounds. The headspace volume influenced the analytical signals strongly for low volatility compounds, but was only slight for highly volatile compounds. An increase in the sample volume can result in stronger analytical signals but limited to a certain signal. By examining five VOCs with different volatility, the obtained linear regression coefficients (R-square) on their standard curves in the concentration range of 5 to 200 ppm were higher than 0.99. The typical detection limit using this method was around a few hundred ppb. The absorbed probe regeneration was highly efficient and typically the regeneration time was shorter than five minutes.


總目錄
中文摘要………………………………………………………………..Ι
英文摘要………………………………………………………………..Ⅱ
謝誌……………………………………………………………………..Ⅲ
總目錄…………………………………………………………………..Ⅳ
圖表目錄………………………………………………………………..Ⅶ
第一章緒論………………………………………………………………1
1- 1 前言…………………………………………………………………1
1- 2 ATR之原理介紹…………………………………………………….3
1- 3 SPME之原理介紹…………………………………………………..9
1- 4 上空間固相微量萃取法…………………………………………..12
1- 5研究動機…………………………………………………………...15
第二章實驗之分析方法簡介…………………………………………..16
2- 1 HSSPME/ATR……………………………………………………...16
2-2 Cooled HSSPME/ATR……………………………………………...19
第三章實驗部分………………………………………………………..20
3- 1實驗裝置之介紹…………………………………………………...20
3-2 SPME覆膜材質之介紹…………………………………………….24
3-3 檢測樣品之介紹…………………………………………………...28
3-4 物品製備…………………………………………………………...30
3-4(A) 覆膜聚合物之配製………………………………………….…30
3-4(B) 分析樣品配製………………………………………………….30
3-5實驗操作流程………………………………………………………33
第四章 HSSPME/ATR偵測水溶液中VOCs………………………….38
4-1 聚合物覆膜厚度之探討…………………………………………...38
4- 2上空間體積的探討………………………………………………...42
4-3 攪拌效應的探討…………………………………………………...45
4-4 溫度效應的探討…………………………………………………...48
4-5 樣品體積的探討…………………………………………………...51
4-6 分析物脫附時間之探討…………………………………………...53
4-7 VOCs的分析……………………………………………………….55
4-8 結論………………………………………………………………...59
第五章Cccled HSSPME/ATR偵測水溶液中的揮發性及半揮發性之化合物……………………………………………………………………..60
5-1 冷卻效應之探討…………………………………………………...60
5-2 最佳冷卻溫度之探討……………………………………………...65
5-3 溫度效應…………………………………………………………...68
5-4 偵測樣品的分析…………………………………………………...71
5- 5結論………………………………………………………………...75
第六章 總結……………………………………………………………76
參考文獻………………………………………………………………..77
圖表目錄
圖1-1 ATR感測原理示意圖……………………………………………7
圖2-1HSSPME/ATR-IR感測原理示意圖……………………………..18
圖3-1HSSPME/ATR-IR實驗裝置圖…………………………………..22
圖3-2Cooled HSSPME/ATR-IR實驗裝置圖…………………………..23
圖3-3 PIB聚合物分子典型吸收光譜圖………………………………27
圖3-4HSSPME/ATR-IR揮發性有機化合物之典型光譜吸收圖…….31
圖3-5Cooled HSSPME/ATR-IR揮發性有機化合物之典型
光譜吸收圖…………………………………………………………….32
圖3-6覆膜PIB聚合物之裝置圖……………………………………..35
圖3-7ATR-IR感測原件光學示意圖………………………………….36
圖3-8覆膜PIB聚合物之裝製圖………………………………………..37
圖4-1不同濃度的PIB薄膜吸收值之關係圖……………………….40
圖4-2不同薄膜厚度檢測100ppmCHCl3吸收值關係圖…………….41
圖4-3上空間體積效應對100 ppmCHCl3吸收值關係圖……………43
圖4-4上空間體積效應對100 ppmTCE吸收值關係圖……………...44
圖4-5攪拌效應對100 ppmCHCl3吸收值關係圖……………………46
圖4-6攪拌效應對100 ppmTCE吸收值關係圖……………………...47
圖4-7溫度效應對100 ppmCHCl3吸收值關係圖……………………49
圖4-8溫度效應對100 ppmTCE吸收值關係圖………………………50
圖4-9檢測100 ppmCHCl3不同樣品體積之吸收曲線圖…………….52
圖4-10利用PIB吸附100 ppmTCE之脫附吸收曲線圖……………..54
圖4-11不同檢測樣品的吸收值與時間曲線關係圖…………………..56
圖4-12HSSPME/ATR-IR檢測樣品之線性關係………………………57
圖5-1冷卻效應對於檢測100 ppmCHCl3吸收值與時間曲線關係圖.62
圖5-2冷卻效應對於檢測100 ppmTCE吸收值與時間曲線關係圖...63
圖5-3冷卻效應對於檢測100 ppm1-CN吸收值與時間曲線關係圖...64
圖5-4不同冷卻溫度對於100 ppmCHCl3吸收值與時間曲線關係圖66
圖5-5不同冷卻溫度對於100 ppmTCE吸收值與時間曲線關係圖…67
圖5-6不同溫度對於100 ppmCHCl3吸收值與時間曲線關係圖…….69
圖5-7不同溫度對於100 ppmTCE吸收值與時間曲線關係圖………70
圖5-8利用5%PIB吸附不同揮發性樣品的吸收值與時間曲線圖….72
圖5-9Cooled HSSPME/ATR-IR檢測樣品之線性關係曲線圖………74
表1-1目前商業化的感測原件晶體之物理性質………………………8
表3-1高分子聚合物的物理性質………………………………………26
表3-2研究中所檢測之有機化合物之性質……………………………29
表4-1 HSSPME/ATR-IR檢測不同揮發性樣品之結果………………58
表5-1 Cooled HSSPME/ATR-IR檢測不同揮發性樣品之結果………73


參考文獻1.Molhave,L.;Hensen,S.Atmospheric Environment. 1991 ,25A,1283-93.2. Stolwijk, J. Workshop on Indoor Air Quality, Risk Analysis. 1990,49-573. Tancrede, M. Atmospheric Environment. 1987,21,2187-22054. Liompart, M.; Li, K.;Fingas, M. Talanta,1999,48,451-4595. Liompart, M.; Li, K.;Fingas, M. Journal of Chromatography A,1998,824,53-616. Michael, E.;Miller.James, D.;Stuart. Anal. Chem. 1999,71,23-277. Chai, X.S.; Zhu, J.Y. Journal of ChromatographyA,1998,779,207-2248. Fustinoni, S.; Giampiccolo, R. ; Buratti, M.; Colombi, A. Journal of Chromatography B, 1999,723,105-1159. Vohra, S.T.; Aggarwal, I.D. Applied Spectroscopy, 1996 ,50 ,985-99010.Krska, R.; Katzir, A. Appl. Phys. Lett. 1993,63,1868-187011.Dianna,S. Blair.; Lioyd, W. Burgess; Anatol, M. Brodsky. Anal.Chem. 1997,69-13,2238-224612.Roman,Gobel; Abraham Katzir. Applied Spectroscopy,49-8,1174-1177 13.Messica,A.;Greenstein,A.;Katzir,A.AppliedOptics 1996,35-13,274-28314.Jong, Heo.; Monica, Rodrigues.; Steven, T. Saggese; Geoerge H. Sigel;Jr. Applied Optics ,1991,30-27,3944-395115.Marc,C.;Ertan-Lamontange.;SterlingA.Tomellini.Applied Spectroscopy, 1995, 49-8,1170-117316. Harrick, N. J. Internal Refelection Spectroscopy; Wiley: New York, 196717.J. Fahrenfort, Spectrochem. Acta. 1961, 17. 698.18. P. R. Griffiths , J. A. de Haseth , Fourier Transform Infrared Spectroscopy, 19419. Gobel, R.; Krska, R.; Kellner, R.; Kastner, J.; Lambrecht, A.; Tacke, M.; Katzir, A. appl. Spectros. 1995, 49, 1174-1177.20. Newby, K.; Reichert, W. M.; Andrade, J. D.; Benner, R. E. Appl. Opt. 1984, 23, 1812-1815.21. Messica, A.; Greenstein, A.; Katzir, A. Schiessel, U.; Tacke, M. Opt. Lett. 1994, 19, 1167-116922. Giulianli. J. F.;Wohltjen, H.; Jarvis, N. L., Opt. Lett. 1983, 8, 54-56.23.Vo-Dinh, T.; Tromberg, B. J.; Griffin, G. D.; Ambrose, K. R.; Sepaniak, M. J.;Gardenhire, E. M. Appl. Spectrosc. 1987, 41, 735-738.24. Simhi, R.; Gotshal, Y.; Bunimovich, D.; Sela, E. A.; Katzir, A. Appl. Opt., 1996, 35, 3421-342525. Janatsch, G.; Kruse-Jarres, J. D.; Marbach, R.; Heise, H. M. Anal. Chem. 1989, 61, 2016-2023.26 Margalit, E.; Dodiuk, H.; Kosower, E. M.; Katzir, A. Proc. Soc. Photo-Opt. Instrum. Eng. 1989, 1048, 145-152.27.S.Simhony, A. Katzir and E.M. Kosower, Anal. Chem., 1988, 60,1908.28. P.H. Paul and G. Kychakoff, Appl. Phys. Lett., 1987, 51,12.29. A. Messica, A. Greenstein, A. Katzir, U. Schiessel and M. Tacke, Opt. Lett., 1994, 19,1167.30. J.F. Giulianli, H. Wohltjen and N.L. Jarvis, Opt. Lett. 1983, 8,54.31. T. Vo-Dinh, B.J. Tromberg, G.D. Griffin, K.R. Ambrose, M.J. Sepaniak and E.M. Grdednhire, Appl. Spectrosc., 1987, 41,735.32. R. Simhi, Y. Gotshal, D. Bunimovich, E.-A. Sela and A. Katzir, Appl. Opt., 1996, 35,3421.33 H.M. Heise, R. Marbach, G. Janatsch and J.D. Kruse-Jarres, Anal. Chem., 1989, 61,2009.34. G. Janatsch, ,J.D. Kruse-Jarres, R. Marbach and H.M. Heise, Anal. Chem., 1989, 61,2016.35.E.Margalit, H. Dodiuk, E.M. Kosower and A. Katzir, Proc.Soc.Photo-Opt.Instrum. Eng. 1989, 1048,145.36. Simhony, S.; Katzir, A.; Kosower, E. M. Anal. Chem. 1988, 60, 1908-1910.37. Blair, D. S.; Burgess, L. W.; Brodsky, A. M. Anal. Chem. 1997, 69, 2238-2246.38. Ertan-Lamontagne, M. C.; Lowry, S. R.; Seitz, W. R.; Seitz, W. R.; Tomellini, S. A. Appl. Spectrosc. 1995, 49, 1170-1173.39. Gobel, R.; Krska, R.; Kellner, R.; Seitz, R. W.; Tomellini, S. A. Appl. Spectrosc. 1994, 48, 678-683.40. Heo, J.; Rodrigues, M.; Saggese, S.; Sigel, Jr. G. H. Appl. Opt. 1991, 30, 3944-3951.41. Yang, J.; Her J.-W. Anal. Chem. 1999, 71, 1773-1779.42. Maguire, R. J.; Tkacz, R. J. Chemosphere. 1989, 19, 1277-1287.43. Namirsnik, J.; Goreck, T.; Biziuk, M. Anal. Chim. Acta 1993, 1, 237.44.Krska, R.;Katzir, A. Applied Phys. 1992,61,177845. Zhang, Z.;Yang, M. J.; Pawliszyn, J. Anal. Chem. 1994, 66, 844A-853A.46. Jiu Ai, Anal. Chem. 1997, 69, 1230-1236.47. Grotet, C.; Pawliszyn, J. Anal. Chem. 1997, 71, 1908-1910.48. Dean, J. R. J. Chromatogr. A. 1996, 754, 221-233.49. Llompart, M.; Li, K.; Fingas, M. Anal. Chem. 1998, 70, 2510-2515.50. Griffiths, P. R.; de Haseth, J. A. Fourier transform Infrared Spectroscopy, 19451.Zhang, Z.; Pawliszyn, J.Anal. Chem. 1993,65,184352.Arthur, C. L.;Killam, L.M.;Buchholz, K. D.; Pawliszyn, J. Anal. Chem. 1992,64,196053. Nilsson, T.; Pelusio, F.; Montanarella, L.; Larsen, B.; Facchetti, S.; Madsen, J. High Resolut Chromatogr. 1995,18,66754. Z. Zhang and J. Pawliszyn, Anal. Chem., 1993,65,1843.55. J. Ai, Anal. Chem., 1997,69,3260.56. J. Ai, Anal. Chem., 1998,70,4822.57.Hino, T.; Nakanishi,S.; Maeda, T. Hobo. Journal of Chromatography A, 1998,810,141-14758. 何志偉,博士論文,中原大學化學所,199959.Z.Zhang ; J.Pawliszyn, Anal. Chem. 1995,67,34-43

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top