(3.238.130.97) 您好!臺灣時間:2021/05/18 18:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李振豪
研究生(外文):Zeng-Hao Lee
論文名稱:1.55微米發光波段超微量摻雜稀土元素磷化銦鎵砷液相磊晶層之特性研究
論文名稱(外文):Characterizations of 1.55μm-luminescent-wavelength InGaAsP layers grown from very lightly RE-treated solution
指導教授:溫武義
指導教授(外文):Wu-Yih Uen
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:51
中文關鍵詞:稀土元素磷化銦鎵砷液相磊晶
外文關鍵詞:InGaAsPrare-earth elementLPE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自 1970 年以來,大家對四元III-V化合物半導體的研究漸感興趣,尤其是與InP晶格匹配的InGaAsP四元化合物。因為這些材料我們可以獨立地調整其晶格常數和能隙以符合我們的需求。
而近年來摻雜稀土元素(Rare-Earth)於III-V化合物半導體的研究,對於提昇光電元件之特性扮演著很重要的角色;此乃由於稀土元素對氧以及其他VI族的元素有極強的親和力,因此有吸附雜質以降低背景濃度之效果,有助於提昇光電元件之特性。
在本論文中,我們以液相磊晶法在磷化銦基板上成長發光波段為1.55微米的磷化銦鎵砷磊晶層,並摻雜不同的稀土元素鈥(Ho)、釹(Nd)、鐿(Yb)來吸附雜質並降低背景濃度。
在磊晶層的特性量測方面,光激螢光(PL)和霍爾量測都顯示出摻雜稀土元素後對磊晶層的品質和載子濃度均有改善,而當鐿(Yb)的摻雜量為0.06565wt%時,有最窄的半高波寬(FWHM)和最低的載子濃度。
最後,我們將未摻雜和摻雜稀土元素的磊晶層研製PIN光檢測器並加以比較,結果仍顯示出摻雜鐿(Yb)為0.06565wt%時,有較佳的元件特性。

In the mid-1970s, the interest in quaternary III-V semiconductor materials began to flourish, particularly in the InGaAsP lattice matched to InP. These materials give independent control of lattice parameter and bandgap (and other material properties).
Rare-Earth (RE) treated III-V compound semiconductors have been of great interest recently. The RE elements have a strong affinity to oxygen and other group VI elements, the effect can be used to perform effective gettering of the background donors and acceptors in III-V semiconductors.
In this study, we grow 1.55μm- luminescent-wavelength InGaAsP on the InP substrate by liquid phase epitaxy(LPE) and add different rare-earth elements(Ho, Nd and Yb) into the growth solution to reduce the background concentration.
Characterizations of InGaAsP epilayers by PL and Hall measurements indicate that both electrical and optical qualities of epilayers are improved by rare-earth treatment. The narrowest FWHM of PL spectrum and the lowest carrier concentration can be obtained from the case of Yb-treatment with Yb adding amount of 0.06565wt%.
Finally, we fabricate PIN photodiodes on undoped and Yb-treated InGaAsP epilayers. Better device properties are still obtained from the same condition as above, namely, carrying out the LPE growth with Yb-treatment, particularly, adding the amount of Yb to higher than 0.06565wt%.

Table of contents2
中文摘要5
英文摘要.6
第一章 簡介 7
第二章 液相磊晶系統與實驗 8
第三章 以液相磊晶技術成長InGaAsP磊晶層 9
第四章 InGaAsP磊晶層特性量測 10
第五章 PIN檢光器之研製與特性研究 11
第六章 結論 12
Chapter 1 Introduction13
1.1 Optical fiber communication13
1.2 About LPE14
1.3 Rare-rarth elements15
Chapter 2 The LPE gowth system and experiment17
2.1 The LPE growth system 17
2.2 The LPE growth technique19
2.3 Material preparation21
2.4 The epilayer growth process23
Chapter 3 The InGaAsP epilayers grown by LPE25
3.1 The InGaAsP-InP lattice-matched system25
3.2 Surface morphology of InGaAsP epilayers28
3.3 The growth thickness of InGaAsP epilayers29
Chapter 4 Characterizations of RE-treated InGaAsP epilayers 30
4-1 Double Crystal X-ray Diffraction30
4-2 Photoluminescence measurement33
4-3 Hall measurement38
Chapter 5 The fabrication and characterizations of InGaAsP PIN photodiodes44
5-1 Introduction44
5-2 LPE growth of InGaAsP/InP/InP multilayer45
5-3 The fabrication of InGaAsP PIN photodiodes45
5-4 Electrical property measurement46
Chapter 6 Conclusions48
References50

References[1] R. D. Burnbam, N. Holonyak , Jr. and D. R. Scifres, A. P. L. 17, 455 (1970).[2] H. Nagai and Y. Noguchi, A. P. L. 26, 108 (19975)[3] G. A. Antypas and R. L. Moon, J. Electrochem. Soc 120, 1574 (1973)[4] R. Sankaran ,R.L.Moon, and G.A. Anytypas, J. Cryst. Growth 33, 271(1974)[5] M. Feng, T. H. Windhorn, M. M. Tashima, and G.E. Stillman, A. P. L. 32,758 (1978)[6] K. Nakajima, T. Kisinoki, K. Akita, and T. Kotani, J. Electrochem. Soc. 125, 123 (1978)[7] G. A. Antypas and J. Edgecumbe, J. Cryst. Growth 34, 132(1976)[8] J. J. Coleman, W. R. Hitchens, N. Holonyak, Jr, and M. J. Ludowise, A. P. L. 25, 725 (1974)[9] J. J. Coleman, N. Holonyak, Jr, M. J. Ludowise,, and D. L. Keune, IEEE J. Quantum Electron. QE-11, 471 (1975)[10] J. J. Hsieh, A. P. L. 28, 283 (1976)[11] J. J. Hsieh, J. A. Ressi and J. P. Donnelly, A. P. L. 28, 709 (1976)[12] T. Yamamoto, K. Sakai, S. Akiba and Y. Suematus, Electron. Let. 13, 142 (1977)[13] K. Oe and K. Sugiyana, J. J. A. P. 15, 2003 (1976)[14] P. D. Wright, E. A. Rezek, N. Holonyak, Jr., G. E. Stillman, J. A. Rossi, and W. O. Grovew, A. P. L. 31, 40 (1997)[15] C. E. Hurwitz and J. J. Hsieh, A. P. L. 32, 487 (1978)[16] H. H. Wieder, A. R. Clawson, and G. E. Mcwilliams, A. P. L. 31, 468 (1997)[17] H. D. Law, L. R. Tomasetta, and K. Nakano, A. P. L. 33, 920 (1978)[18] H.nelson, RCA, REV. 24, p603, 1963.[19] P.L.Anderson, Monsanto, S.T.Louis, Intrim. Tech. Report Vol-1, p28, 1969.[20] M.B.Panish, S.Sumski and I.Hayashi, Met.Trams, 2, 195, 1973.[21] K. Uwai, H. Nakagome and K. Takahei: Appl. Phys. Lett. 50 (1987) 977.[22] K. Uwai, H. Nakagome and K. Takahei: Appl. Phys. Lett. 51 (1987) 1010.[23] R. S. Smith, Ennen, II. P. Wennekers and M. Maier: Appl. Phys. Lett. 50 (1987)49.[24] B. Stringfeoolw, J. Appl. Phys, 8 (1972) 3455.[25] Koukitu, A. Saegusa and H. Seki, J. Crystal Growth, 99 (1990) 556.[26] R. Ghez and M. B. Small, J. Appl. Phys. 53 (1982) 4907.[27] S.Dhar, Shampa Paul, V. N. Kulkarni, Applied physics letters. 76, 1588 (2000)[28] Sheng-Yuan Denq, High Responsivity of Planar InGaAs/InP PIN Photodetectors, National Tsing Hua University 1996.[29] R.E Nahory, M. A. Pollack, W. D Johnston, Jr, and B. L. Barns, Appl. Phys. Letters 33 (1978) 659.[30] E. Kuphal, J. Phase diagrams of InGaAsP, InGaAs and InP lattice-matched to (100) InP. Journal of crystal growth 67(1984), P441~457.[31] 廖昆鋒, 摻雜稀土元素磷化銦鎵砷磊晶層之特性研究及元件應用, 碩士論文, 中原大學, 中華民國89年6月.[32] O. Prochazkova, J. Oswald, J. Zavadil, F. Srobar and J Novotny. Characterization of InP and GaInAsP layers prepared by liquid-phase epitaxy using holmium doping and gettering. Materials Science and Engineering B44 (1997) 160~163.[33] A. Krier, H. H. Gao and V. V. Sherstnev. Purification of epitaxial InAs grown by liquid phase epitaxy using gadolinium gettering. Journal of Applied Physics, Volume 85, number 12, 15 June 1999.[34] Wen-Jeng Ho, Meng-Chyi Wu, Yuan-Kuang Tu and Hung-Hui Shih. High responsivity GaInAs PIN photodiode by using erbium gettering. IEEE Transactions on Electron Devices, Vol. 42, No. 4, April 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top