(3.227.0.150) 您好!臺灣時間:2021/05/08 08:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱謙松
研究生(外文):Chian-Song Chiu
論文名稱:約束系統之強健非線性控制理論及其在機器人之應用
論文名稱(外文):Robust Nonlinear Control Methods of Constraint Systems and Their Applications on Robots
指導教授:練光祐
指導教授(外文):Kuang-Yow Lian
學位類別:博士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:250
中文關鍵詞:控制非完整約束系統完整約束系統適應性控制
外文關鍵詞:Holonomic SystemsAdaptive ControlControl
相關次數:
  • 被引用被引用:1
  • 點閱點閱:128
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分別對完整約束與非完整約束系統提出數種非線性強健控制理論,並應用於各種常見之非線性約束系統。對於系統之約束條件、建立模式、相關特性、與控制問題之討論皆以循序漸進的方式進行,並以解線性矩陣不等式的方式達成強健控制參數之設計。基於此兩大類約束系統之不同特性,控制理論之推導以各別討論的方式進行。首先對於完整約束系統之約束條件、幾何關係,運動模式推導進行討論。接著,針對純參數不確定之完整約束系統以適應控制法則達成運動軌跡與力量追蹤具零誤差。在考慮非參數不確定與外來干擾時,基於狀態迴授與前饋補償概念設計適應性模糊控制器達成運動軌跡與力量強健追蹤控制。當約束條件不確定時,強健適應控制將保證其外來干擾與估測參數誤差的影響可以抑制到預定的程度。同時為反應實際系統,不確定性,如未知磨擦力也將被考慮於控制器設計。
針對非完整約束系統,其不可積之約束條件及運動方程之推導首先被討論。對其一般之系統模式,以近似之T-S模糊模型建立模糊模式。控制器則以模糊平行分佈補償器來設計,此解決了系統不確定、外界干擾、與模糊模型誤差等對控制的影響。並且經由較為寬鬆之線性矩陣不等式條件的滿足,控制系統可達到強健穩定化與模式追蹤的成果。另外,以自走車路邊停車問題做為增益排程控制法之應用。結合人類開車經驗與強健滑模控制之強健性能,發展模糊滑模控制器完成區域路徑追蹤之目的。增益排程整合了增益排程模組、模糊決策、與區域路徑追蹤控制器解決了路邊停車問題。同時應所提出之控制理論於常見之約束系統;如約束機械臂、單腳跳動機器人;做數值模擬驗證,已達成預定之效益。
This thesis presents the issue of developing nonlinear robust control laws for two classes of constraint nonlinear systems, namely, holonomic systems and nonholonomic systems. From their arising constraints, the modeling, related properties, and control are discussed in a systematic fashion. Based on synthesized representations of two constraint systems,
control of these constraint nonlinear systems is separately performed in a unified robust control approach and linear matrix inequality (LMI) based
design. For holonomic systems, a general model is first introduced to represent the system with an environmental constraint or a set of closed
kinematic chains. Then an adaptive scheme is proposed to achieve both zero motion and force tracking errors for pure parametric uncertain systems. In the presence of the nonparametric uncertainties and external disturbances,
the state-feedback and feedforward adaptive fuzzy controllers are developed in a global fashion, where the uniform ultimate boundedness and robust
tracking of motion and force errors are assured. When considering uncertain constraint, a robust adaptive control scheme is developed to satisfy a
prescribed robust criterion, which consists of the disturbance attenuation and the estimated parameter error attenuation. For more exact tracking control, the uncertainties, such as unknown friction force, and disturbances
are also taken into considerations in the controller design.
For nonholonomic systems, the configuration dynamic model is first derived from their non-integrable constraint and the Lagrange''s equation. Next, an approximate Takagi-Sugeno (T-S) fuzzy model is introduced to perform the
fuzzy model-based control. Based on the model, parallel distributed compensators are developed to cope with the uncertainties, disturbance, and
fuzzy modeling errors. Robust stabilization and tracking will be obtained from solving relaxed LMI problems. Moreover, focusing on the car-like robot, a gain scheduling scheme is proposed to extend the work-space of a local nonlinear path tracking controller. By means of programing a path family and scheduling a set of controller parameters, the fuzzy scheduler consists of
linguistic rules and a data-base. Accompanying the introduced fuzzy sliding mode path tracking controller, the overall gain scheduling controller
performs parallel parking for a car-like robot. Finally, several numerical simulation results for typical holonomic and nonholonomic systems, such as a planar constrained robot, two coordinated robot transporting a common object, a car-like robot, a one-leg hopping robot, illustrates the expected performance.
封面
第一章緒論
第二章完整約束機械系統之適應性運動及力量追蹤控制
第三章完整約束機械系統之模糊適應控制
第四章具不確定約束條件之完整約束系統之強健適應性控制
第五章模糊模式控制法則應用於非完整約束系統控制
第六章自走車路邊停車之模糊增益排程控制
第七章結論
誌謝
1. Introduction
1.1 Background
1.2 Survey of Related Research
1.3 Motivation
1.4 Organization of the Thesis
2. Adaptive Motion/Force Tracking Control of Holonomic Constrained Mechanical Systems
2.1 Introduction
2.2 General Model and Typical Examples
2.3 Adaptive Motion/Force Tracking Controller
2.4 Enhanced Robustness
2.5 Simulation Results
2.6 Conclusions
3. Adaptive Fuzzy Control of Holonomic Constrained Mechanical Systems
3.1 Introduction
3.2 Mathematical Preliminaries
3.3 Description of Uncertain Models
3.4 State Feedback Fuzzy Controller Design
3.5 Feedforward Fuzzy Controller Designs
3.6 Simulation Results
3.7 Conclusions
4. Robust Adaptive Control forHolonomic Systems with Unknown Constraints
4.1 Introduction
4.2 Dynamics Formulation
4.3 Robust Adaptive Motion/Force Tracking
4.4 Simulation Results
4.5 Conclusions
5. Control of Nonholonomic Systems via Fuzzy Model-Based Approach
5.1 Introduction
5.2 General Fuzzy Model of Nonholonomic Systems
5.3 Stabilization Controller
5.4 Nonlinear Model Following with Guaranteed H∞ Performance
5.5 Experiment Results
5.6 Conclusion
6. Fuzzy Gain Scheduling for Parallel Parking a Car-Like Robot
6.1 Introduction
6.2 Fuzzy Gain Scheduling Strategy for Stabilizing Mobile Robots
6.3 Modeling and Path Planning of a Car-Like Robot
6.4 Local Rath Tracking Controller Design
6.5 Complete Fuzzy Gain Scheduling Controller Design
6.6 Simulation Results
6.7 Experiment Results
6.8 Conclusions
7. Conclusions
Appendix A. Smooth Projection Algorithm
B. Proofs
C. Fuzzy Modeling of Car-Like Robot
D. Experimental Setup
Bibliography
[1] T. S. Chiang, ''Analysis and Synthesis for Chaotic Synchronization and Application in Secure Communication,'' Ph.D. Dissertation, Department of Electronic Engineering, Chung-Yuan Christian University, 2001.[2] C. S. Chiu, ''Robust Nonlinear Control Methods of Constraint Systems and Their Applications on Robots,'' Ph.D. Dissertation, Department of Electronic Engineering, Chung-Yuan Christian University, 2001.[3] S. S. Farinwata, D. Filev, and R. Langari (Edits), Fuzzy Control --- Synthesis and Analysis, John Wiley & Sons, Inc., New York, 2000.[4] H. K. Khalil, Nonlinear systems (second edition), Prentice-Hall, Inc., New Jersey, 1996.[5] F. L. Lewis, C. T. Abdallah, and D. M. Dawson, Control of robot manipulators, Macmillan Publishing Company, New York, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔