跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 20:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:覃永隆
研究生(外文):Yuan-Lung Chin
論文名稱:以CMOS製程技術製作延伸式場效電晶體及其訊號處理積體電路之研究
論文名稱(外文):Study of the Extended Gate Field Effect Transistor (EGFET) and Signal Processing IC Using the CMOS Technology
指導教授:熊慎幹
指導教授(外文):Shen-Kan Hsiung
學位類別:博士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:110
中文關鍵詞:多感測器晶片讀出電路CMOS標準製程生醫感測器離子感測場效電晶體
外文關鍵詞:Readout CircuitExtended Gate Field Effect Transistor (EGFET)BiosensorCMOS Standard ProcessMulti Sensor
相關次數:
  • 被引用被引用:3
  • 點閱點閱:336
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
以CMOS製程技術製作延伸式場效電晶體及其訊號處理積體電路之研究研 究 生: 覃永隆 指導教授: 熊慎幹 博士 中文摘要 離子場效電晶體最先發表於1970年,由於其具體積小、反應快速及製程相容於金氧半場效電晶體半導體製程等優點,而具有成為化學及生醫感測元件的潛力,目前已受到廣泛的研究。在我國晶圓代工的技術已臻於世界的水準,如何在即有的優勢,結合半導體標準製程,製作出微感測器及電路的單晶片是我們所應努力研發的方向。因此技術的成功,可帶動許多的產業,由於標準製程具有許多的優點,如量產,製程的良率高,可降低成本。而生產的成品體積很小,可集各感測器及相關的電路於單一晶片上,甚至做成陣列的型式,應用的層面相當廣泛。 本論文即是研究如何將離子感測器以CMOS半導體製程製作。在研究的結果中,發現延伸式閘極架構的離子感測器,最能吻合現有的製程。以此型式製作離子感測器,不需額外的光罩或蝕刻等後段的加工製程,只要用濺鍍機鍍上感測薄膜,再經封裝即可完成。在選擇薄膜的過程中,以模擬及實驗的結果,得知其感測膜的內阻值不可過高。研究發現氧化錫及氮化鈦是可運用於離子感測器的感測膜。量測結果顯示,以此薄膜為感測材料之感測元件,擁有極佳之感測特性。為達到感測器及讀出電路於同一晶片的目的,本論文研發三種適用於離子感測器的讀出電路,並同時製作於同一晶片中,使成為單晶片的型式。最後,亦提出各電路的適用層面。 由於離子感測器會隨溫度的變化而影響其輸出,進而減少其應用的範圍。所以探討此種感測元件之溫度特性及補償方法。在此研究主題中,首先對離子感測器的溫度特性,分別研析出元件中會隨溫度改變的變因。最後針對其變因各採取補償的方式,而提出在同一晶片下製作二極體溫度感測器的結構,運用延伸式離子感測器正向的溫度係數及二極體負向的溫度係數,再經由加總電路將兩訊號相加,而達到溫度補償的目的。 離子感測器會受溫度及光影響而造成不穩定輸出的缺點,為解決此問題,設計同時具有可偵測酸鹼值、溫度及光強度的多感測器晶片。透過特殊設計的讀出電路,可使整體的晶片體積縮小,且效能高。此多感測器的單晶片,可做為離子感測器在溫度及光方面的補償外,亦可延伸做為生醫感測器的應用。關鍵詞: 離子感測場效電晶體、CMOS標準製程、氧化錫、氮化鈦、讀出電路、溫度特性、多感測器晶片、生醫感測器。
Study of Extended Gate Field Effect Transistor (EGFET) and Signal Processing IC Using CMOS technology Student : Yuan-Lung Chin Advisor : Dr. Shen-Kan HsiungDepartment of Electronic Engineering Chung-Yuan Christian UniversityAbstract A description of the ion sensitive field effect transistors (ISFET) was first published in 1970 (Bergveld 1970). More recently the ISFET has been studied extensively because it’s advantages such as small size, rapid response and more importantly, the possibility of the manufacturing using the MOSFET process. Moreover, it has extended applications in bioelectric and biosensors. In our country, the CMOS IC foundry industry has achieved world class technology levels. Using the advantageous position to produce micro sensors and circuits using the CMOS IC standard process is our current objective. This technology must be studied and developed. The potential advantages of this process including mass production, high-yield and low cost will bring these advantages to many industries. These small sized products can integrate sensors and readout circuits into the same chip to produce an array. The aim of this study was to fabricate the ion sensors using the standard CMOS process. Producing an extended gate field effect transistor (EGFET) structure to suit this process was also necessary. This EGFET structure must require no extra mask or post-process etching. In addition to dielectric material used as the pH sensing layer, conducting material such as SnO2, TiN applied using r. f. sputtering have also been shown to be a sensitive and inert alternative material. According to the experimental results, it exhibited good response and performance. From the simulation and experimental results, the inner resistor of sensing membrane must not be too large. Three kinds of readout units for the EGFET were tested for the application in a single chip.Investigations have demonstrated that EGFETs have a large thermal instability, which leads to inaccuracy in measurements. It is often necessary for EGFETs to be used under thermostatic conditions to ensure the necessary accuracy. Since this is not convenient for many applications. It is important to investigate the thermal behavior of EGFETs to determine effective methods to improve their stability. In this study, we report on a method for the EGFET temperature compensation. A summation circuit was used to combine an EGFET and a p-n temperature sensor diode. Using the p-n diode negative temperature coefficient and the EGFET positive temperature coefficient together, the two sensors can reduce the temperature characteristics of the ISFET. In order to simplify the sensor fabrication into one chip, the EGFET, p-n diode and readout circuits were produced using a CMOS standard IC process.The ISFET pH sensors have problems such as thermal instability and are easily affected by light. With the aim of solving these problems, we designed a chip that includes a pH sensor, temperature sensor, photo sensor and readout circuits. This chip has the ability to readout three kinds of data simultaneously and compensate for the EGFET pH sensor sensitivity to the temperature and light. In order to reduce the chip area, the novel readout circuits were specially designed to reduce the chip area. They are not only used increasingly for a variety of purposes for the EGFET temperature and light compensation, but also for chemical, medicine and biosensor industry applications.Keywords: Extended Gate Field Effect Transistor (EGFET), CMOS Standard Process, SnO2, TiN, Readout Circuit, Temperature Characteristic, Multi Sensor, Biosensor
封面
Abstract
List of symbols
Figure captions
Table captions
Contents
Chapter 1 Introduction
1.1 Ion Sensitive Field Effect Transistor with the CMOS IC process
1.2 Thesis objectives
1.3 Outline of this thesis
Chapter 2 Theory Description
2.1 Introduction
2.2 Site binding model and double layer theorm
2.3 Behavior model using HSPICE
2.4 Results and discussions
Chapter 3 EGFET pH Smart Sensors Fabrication Using the CMOS IC Process
3.1 Introduction
3.2 Non-self-alignment methods
3.3 Self-alignment methods
3.4 Extended-gate field effect transistor (EGFET)
3.5 EGFET instrumentation
3.6 Measurement
3.7 Results and discussion
Chapter 4 EGFET Temperature Characteristics and Compensation
4.1 Introduction
4.2 Temperature characteristics of the EGFET
4.3 Temperature compensation of the EGFET
4.4 Integrate sensors
4.5 Readout circuits
4.6 Results and discussions
Chapter 5 Monolithic Multi-Sensors
5.1 Introduction
5.2 EGFET pH sensor
5.3 p-n diode of the temperature sensor
5.4 p-n diode of the photo sensor
5.5 Readout circuits
5.6 Preparation of the sensor chip
5.7 Measurement
5.8 Results and discussions
Chapter 6 Conclusions and Suggestions for Further Work
6.1 Conclusions
6.2 Suggestions for further work
References
Biography and list of publications
[1]P.Bergveld, Develop of an ion-sensitive solid state device for neurophysiological measurement , IEEE Trans. Biomed. Eng, Vol. BME-17, (1970) 70-71.[2]P. Gimmel, K. D. Schierbaum etc., Microstructure solid-state ion-sensitive membranes by thermal oxidation of Ta, Sensors and Actuators, B1 (1990) 345-349.[3]J. A. Voorthuyzen and P. Bergveld, Photoelectric effects in Ta2O5-SiO2-Si structures, Sensors and Actuators, B1 (1990) 350-353.[4]P. Gimmel, K. D. Schierbaum and W. Gopel, Reduced light sensitivity in optimized Ta2O5-ISFET structures, Sensors and Actuators B 1 (1991) 135-140.[5]Stanley D. Moss, Curtis C. Johnson, Jirijanata, Hydrogen, calcium and potassium ion sensitive FET transistors a preliminary report, IEEE Trans. Electron Devices 33 (1) (1978) 49-54.[6]Hung-Kwei Liao, Jung-Chuan Chou, Wen-Yaw Chung, Tai-Ping Sun, Shen-Kan Hsiung, Study on the interface trap density of the Si3N4/SiO2 gate ISFET, Proceedings of the Third East Asian Conference on Chemical Sensors, Seoul, South Korea, 5-6 November (1997) 394-400[7]P. Gimmel, B. Gompf, D. Schmeiosser, H. D. Weimhofer, W. Gopel, M. Klein, Ta2O5 gates of pH sensitive devices comparative spectroscopic and electrical studies, Sensors and Actuators B 17 (1989) 195-202.[8]J. Bausells, J. Carrabina, A. Errachid, A. Merlos, Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology, Sensors and Actuators B 57, (1999) 56-62.[9]Hon-Sum Wong, Marvin H. White, A CMOS-Integrated ‘ISFET-operational amplifier’ chemical sensor employing differential sensing, IEEE Transactions on Electron Devices, Vol. 36, No. 3 (1989) 479-487.[10]C. Cane, A. Gotz, A. Merlos, I. Gracia, A. Errachid, P. Losantos, E. Lora-Tamayo, Multilayer ISFET membranes for microsystems applications, Sensors and Actuators B 35-36 (1996) 136-140.[11]T. C. W. Yeow, M.R. Haskard, D.E.Mulcahy, H. I. Seo, D. H. Kwon, A very large integrated pH-ISFET sensor array chip compatiblewith standard CMOS process, Sensors and Actuators B 44, (1997) 434-440.[12]J. Bausells, Approach for semi-custom integrated sensor system manufacturing in a commercial CMOS technology, Proc. SPIE Symp. Micromachining and Microfabrication Process Technology II, Austin, TX, USA, SPIE, Vol. 2882, (1996) 307-318.[13]J. Van Der Spiegel, I. Lauks, P. Chan and D. Babic, The extended gate chemically sensitive field effect transistor as multi-species microprobe, Sensors and Actuators, 4 (1983) 291-298.[14]K. Tsukada, Y. Miyahara, Y. Shibata and H. Miyagi, An integrated micro multi-Ion sensor using platinum-gate field-effect transistor, Solid-State Sensors and Actuators (Transducers ’91), San Francisco, USA., IEEE. (1991) 218-221.[15]I. Lauks, J. Van der spiegel, W. Sansen and M. Steyaert, Multispecies integrated electrochemical sensor with on-chip CMOS circuitry, International Symposium on Circuits and Systems, IEEE, New York, (1985) 122-124.[16]Teruaki Katsube, Tatsuo Araki, Masashi Hara, Tamaki Yaji, Shinichi Kobayashi and Kenji Suzuki, A multi-speciese biosensor with extended-gate field effect transistors, Proceeding of the 6th Sensor Symposium, Japan, May (1986) 211-214.[17]Hung Kwei Liao, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, Shen Kan Hsiung, Study of amorphous tin oxide thin films for ISFET applications, Sensors and Actuators B 50 (1998) 104-109.[18]Yuan Lung Chin, Jung Chuan Chou, Tai Ping Sun, Hung Kwei Liao, Wen Yaw Chung, Shen Kan Hsiung, A novel SnO2/Al discrete gate ISFET pH sensor with CMOS standard process, Sensors and Actuators B, Vol. 75, 1-2, (2001) 36-42.[19]Zhen Ce Lei, Jung Chuan Chou, Yuan Lung Chin, Wen Yaw Chung, Tai Ping Sun and Shen Ken Hsiung, A novel pH sensitive material based on titanium nitride for extended gate ISFET, Proceedings of The 2000 Annual Conference of The Chinese Society for Materials Science, Taiwan, (2000) 174-178.[20]G. Massobrio and M. Grattarola, ISFET-based biosensor modeling with SPICE, Sensors and Actuators B 1, (1990) 401-407.[21]R.E.G. Van Hal, J.C.T. Fijkel, P. Bergveld, A general model to describe the electrostatic potential at electrolyte oxide interfaces, Advances in Colloid and Interface Science 69 (1996)31-62.[22]J. L. Diot, J. Joseph, J. R. Martin and P. Clechet, pH dependence of the Si/SiO2 interface statedensit for EOS systems, J. Electroanal. Chem., 193 (1985) 75-88.[23]Meng-Nian Niu, Xin-Fang Ding, Qin-Yi Tong, Effect of two types of surface sites on the characteristics of Si3N4-gate pH-ISFETs, Sensors and Actuators B 37 (1996) 13-17.[24]P. Bergveld , The operation of an ISFET as an electronic device, Sensors and Actuators B 1 (1981) 17-29.[25]William M. Siu and Richard S. C. Cobbold, Asic propertipes of the electrolyte-SiO2-Si system: physical and theoretical aspects, Transactions on Electron Devices, vol. ED-26, No. 11. (1979) 1805-1815.[26]S.M. Zse, Semiconductor Sensor, Wiley, New York, USA, 1994.[27]D. E. Yates, S. Levine and T.W. Healy, Site-binding model of the electrical double layer at the oxide/water interface, Journal Chem. Soc. Faraday Trans. I, 70 (1974) 1807-1818.[28]Massimo Grattarola, Giuseppe Massobrio and Sergio Martinoia, Modeling H+-sensitive FET’s with SPICE, IEEE Transactions on Electron Devices, Vol. 39, No. 4. (1992) 813-819.[29]Sergio Martinoia, Giuseppe Massobrio and Massimo Grattarola, An ISFET model for CAD application, Sensors and Actuators B 8 (1992) 261-265[30]L. K. Meixner and S. Koch, Simulation of ISFET operation based on the site-binding model, Sensors and Actuators B 6 (1992) 315-318.[31]Sergio Martinoia, Massimo Grattarola and Giuseppe Massobrio, Modelling non-ideal behaviours in H+-sensitive FETs with SPICE, Sensors and Actuators B 1 (1992) 261-264.[32]Wen Liang Kuo, Jung Chuan Chou, Simulation and study of sensors based on the ISFET device, Designated subject, Institute of Electronic and Information Engineering, National Yunlin University of Science and Technology, , Taiwan 640, R. O. C., (1996)[33]Sergio Martinoia, Giuseppe Massobrio, A behavioral macromodel of the ISFET in SPICE, Sensors and Actuators B 62 (2000) 182-189.[34]Hung Kwei Liao, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun and Shen Kan Hsiung, Study of pHpzc and surface potential of tin oxide gate ISFET, Materials Chemistry and Physics 2428 (1999) 1-6.[35]C. Cane, I. Gracia and A. Merlos, Microtechnologies for pH ISFET chemical sensors, Microelectronics Journal 28 (1997) 389-405.[36]B. Palan, K. Roubik, M. Husak and B. Courtois, CMOS ISFET-based structure for biomedical applications, the 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, Lyon France, (2000) 502-506.[37]S Middelhoek, A A Bellekom, U Dauderstadt, P J French, Silicon sensors, Meas. Sci. Technol. 6 (1995) 1641-1658.[38]Norman F. Sheppard, Jr., Matthew J. Lesho, Philip Mcnally, Microfabricated conductimetric pH sensor, Sensors and Actuators B 28 (1995) 95-102.[39]A. A. Shulga, L.I. Netchiporouk, A.K. Sandrovsky, A. A. Abalov, O.S. Frolov, Yu. G. Kononenko, H. Maupas, C. Martelet, Operation of an ISFET with non-insulated substrate directly exposed to the solution, Sensors and Actuators B 30 (1996) 101-105.[40]Luc Bousse, John Shott and James D. Meindl, A process for the combined fabrication of ion sensor and CMOS circuits, IEEE Electron Device Letters, Vol. 9. No.1 (1988) 44-47.[41]T. Matsuo and M.Esashi, Methods of ISFET fabrication, Sensors and Actuators, 1 (1981) 77-96.[42]H. Abe, M. Esashi and T. Matsuo ISFETs using inorganic gate thin films, IEEE Trans. Electron Devices, ED-26(12) (1979) 1939-1944.[43]C. F. Chan and M.H. White, Characterization of surface and buried channel ion sensitive field effect transistors (ISFETs), Proc. IEDM 83 Meeting, July (1983) 651-653.[44]L. Bousse, N.F. de Rooij and P. Bergveld, Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface, IEEE Trans. Electron Devices, ED-30(10), (1983) 1263-1270.[45]T. Akiyama, Y. Ujihira, Y. Okabe, T. Sugano and E. Nkik, Ion-sensitive field-effecttransistors with inorganic gate oxide for pH sensing, IEEE Trans. Electron Devices, ED-29(12) (1982) 1936-1941.[46]Y. Vlasov, A. Bratov, M. Sidorova and Y. Tarantov, Investigation of pH-sensitive ISFETs with oxide and nitride membranes using colloid chemistry methods, Sensors and Actuators B 1 (1990) 357-360.[47]K. M. Chen, G.H. Li, LX. Chen and Y. Zhu, Improvement of structural instability of the ion-sensitive field-effect transistor (ISFET), Sensors and Actuators B 13-14(1993) 209-211.[48]A. Garde, J. Alderman, W. Lane, Development of a pH-sensitive ISFET suitable for fabrication in a volume production environment, Sensors and Actuators B 26-27 (1995) 341-344.[49]P. Bergveld and A. Sibbald, Analytical and biomedical applications of ion-selective field-effect transistors, Wilson and Wilson’s Comprehensive Analytical Chemistry, vol. XXIII, Amsterdam-Oxford-New York-Tokyo.[50]K. Dzahini, F. Gaffiot. M. Le Helley, Using a CMOS ASIC technology for the development of an integrated ISFET sensor, Euro ASIC ’91 Conference, IEEE. (1991) 356-359.[51]B. Palan, F.V. Santos, J.M. Karam, B. Courtois, M. Husak, New ISFET sensor interface circuit for biomedical applications, Sensors and Actuators B 57 (1999) 63-68.[52]M.H. Ku, Research and application on low-voltage CMOS rail-to-rail operational amplifier, Master thesis, Chung Yung university, R.O. C. Taiwan, July, 2000.[53]Ron Hogervorst, John P. Tero, Ruud G. H. Eschauzier, and Johan H. Huijsing, A compact power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries, IEEE Journal of Solid-State Circuit, Vol. 29, No.12, Dec. (1994) 1505-1513[54]Chung-Lin Wu, Jung-Chuan Chou, Wen-Yaw Chung, Tai-Ping Sun, Shen-Kan Hsiung, Study on SnO2/Al/SiO2/Si ISFET with a metal light shield, Materials Chemistry and Physics 8605 (1999) 1-5.[55]Wang Gui-Hua, Yu Dun and Wang Yao-Lin, ISFET temperature characteristics, Sensors and Actuators, 11 (1987) 221-237.[56]Chak-Yoon Aw and Peter W. Cheung , A pH-ISFET sensor with on-chip temperature sensing, IEEE Engineering in Medicine and Biology Society 10th Annual International Conference,1988.[57]Peter R. Barabash, Richard S. C. Cobbold and Wojciech B. Wlodarski, Analysis of the threshold voltage and its temperature dependence in electrolyte-insulator- semiconductor field-effect transistors (EISFET’s), IEEE Transactions on Electron Devices, Vol. ED-34, No. 6, June (1987) 1271-1282.[58]R. S. C. Cobbold, Transducers for biomedical measurements: princilples and applications, New York: Wiley, 1974.[59]R. Gomer and G. Tryson, An experimental determination of absolute Half-Cell EMF’s and single ion free energies of solvation, J. Chem. Phys., Vol. 66, pp.4413-4424, 1977.[60]W. N. Hansen and D. M. Kolb, The work function of immersed electrodes, J. Electroanal. Chem., vol. 100, (1979) 493-500.[61]L. Bousse, The chemical sensitivity of electrolyte/interface/-silicon structures, Ph.D. Dissertation, Twente university of technology, Enschede, 1982.[62]H. K. Liao, Study of tin oxide as a sensing film for ISFET applications, Dissertation of Ph.D., Chun Yuan Christian University, Chung Li, 1998. [63]Hans Van Den Vlekkert. Luc Bousse. and Nico De Roou, The Temperature dependence of the surface potential at the Al2O3/Electrolyte interface, Journal of Clloid and Interface Science. Vol 122, No.2 April (1988) 336-345.[64]K. I. Tang, Study on temperature effect of ISFET devices, Master thesis, Hua Fan University, R.O.C., Taiwan, July, 1997.[65]B.K. Jones and P. C. Russell, Temperature dependence of the MOS mobility degradation, IEE Proceedings, Vol. 135, Pt. I, No. 4, August (1988) 94-96. [66]Stephen Cheng and Pete Manos, Effects of operating temperature on electrical parameters in an analog process, IEEE Circuits and Devices Magazine, July, (1989) 31-38.[67]Meng-Nian Niu, Xin-Fang Ding, Qin-Yi Tong, Effect of two types of surface sites on the characteristics of Si3N4-gate pH-ISFET, Sensors and Actuators B37 (1996) 13-17.[68]Jung-Chuan Chou, Yii-Fang Wang, Jin-Jung Lin, Temperature effect of a-Si:H pH-ISFET, Sensors and Actuator B 62 (2000) 92-96.[69]W. Oelbner, J. Zosel, F. Berthold, H. Kaden, Investigation of the dynamic response behaviour of ISFET pH sensors by means of laser Doppler velocimety (LDV), Sensors and Acturators B 26-27 (1995) 345-348.[70]Derek Midgley, Glass pH electrodes with improved temperature characteristics: use of a low-impedance pH sensor as the inner reference electrode, Analyst. Vol. 115, October (1999) 1283-1287.[71]Sergio Martinoia, Leandro Lorenzelli, Giuseppe Massobrio, Paolo Conci, Temperature effects on the ISFET begaviour: Simulations and measurements, Sensors and Actuators B (1988) 60-68.[72]Teruaki Katsube, Tatsuo Araki, Masashi Hara, Tamaki Yaji, Shinichi Kobayashi and Kenji Suzuki, A multi-speciese biosensor with extended gate field effect transistors, Proceedings of the 6th Sensor Symposium, Japan, May, (1986) 211-214.[73]Kuang Feng Sung, The design of a veraiable gain instrumentation amplifier, Master thesis, R.O.C., Taiwan, June (1999).[74]Hung Kwei Liao, En Shieh Yang, Jung Chung Chou, Tai Ping Sun and Shen Kan Hsiung, Temperature and optical characteristics of tin oxide membrane gate ISFET , IEEE Transactions on Electron Devices ,Vol .46. No.12, December (1999) 2278-2281.[75]Hung Kwei Liao, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun and Shen Kan Hsiung, SnO2 thin film prepared by r. f. reactive sputtering for SnO2/Si3N4/SiO2 gate ISFETs applications,Proceedings of the First Asia-Pacific International Symposium on The Basic and Application of Plasma Technology, National Yunlin University of Science and Technology, Taiwan, December 15-16 (1997) 191-194.[76]Li-Lun Chi, Jung-Chuan Chou, Wen-Yaw Chung, Tai-Ping Sun, Shen-Kan Hsiung Study on extended gate field effect transistor with tin oxide sensing membrane Materials Chemistry and Physics 63 (2000) 19—23[77]Han Jinghong, Cui Dafu, Li Yating, Cai Jine, Dong Zheng, Zhang Hong, A new type of transcutaneous PCO2 sensor, Sensors and Actuators B 24-25 (1995) 156-158.[78]Aurelio Barbaro, Claudio Colaudio Colapicchioni, Enrico Davini, Giuseppina Mazzamurro, Andrea Piotto iotto, Chemfet devices for biomedical and environmental application, Advanced Materials, Vol. 4, No.6 (1992) 402-408.[79]R. L. Smith and D. C. Scott, An Integrated sensor for electrochemical, IEEE Transactions on Biomedical Engineering, Vol. BME-33, No. 2, Feb. (1986) 83-90.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 蘇宏仁(民86):科教課程模式─科學、技能、社會(STS)之探討研究。科學教育月刊,第190期,頁2-11。
2. 魏明通(民85):我國數理資優教育。教育資料集刊第21輯,頁155-182,國立教育資料館編印。
3. 蔡典謨(民89):透過獨立研究培養知識的生產者。資優教育的全方位發展,頁397-413。台北:心理出版社。
4. 蔡典謨(民75):只有歷史能告訴我們誰是真正資優。資優教育季刊,21期,31-34頁。
5. 楊冠政(民66):各國科學課程發展趨勢。科學教育,6期,頁42-53。
6. 黃啟淵(民86):從探究技能、專題研習到獨立研究。資優教育的革新與展望─開發潛能培育人才,頁377-396。台北:心理出版社。
7. 郭靜姿(民86):如何指導資優生進行獨立研究。資優教育的革新與展望─開發潛能培育人才,頁397-422。台北:心理出版社。
8. 郭靜姿(民82):如何指導資優生進行獨立研究。資優教育季刊,48期,5-15頁。
9. 郭重吉(民76):評介學習風格之有關研究。資優教育季刊,23期,頁7-16。
10. 洪文東(民84):科學教育的目標。屏師科學教育,第1期,頁4-11。
11. 林清山(民71):科學資賦優異學生的輔導,資優教育季刊,5期,頁28-31。
12. 王振德(民80):我國資優教育相關問題及教學狀況調查研究。特殊教育研究學刊,8期,249-264頁。
13. 參考文獻 英文:Aarle Bas Van , Boss Michael , and Hlouskova Jaroslava , “Forecasting the Euro Exchange Rate Using Vector Error Correction Models,” Weltwirschaftliches Archiv, 136(2), 2000, P232-258.Box, G. P., and Jenkins, G. M., “Time Series Analysis: Forecasti