(3.236.122.9) 您好！臺灣時間：2021/05/14 05:13

詳目顯示:::

:

• 被引用:0
• 點閱:224
• 評分:
• 下載:0
• 書目收藏:0
 摘 要在對群集類別資料作分析時，找尋混合分配的參數估計是一個重要的步驟。在Yang and Yu (1999)中曾利用最大概似(MLE)演算法，期望最大概似(EM)演算法，分類最大概似(CML)演算法及模糊分類最大概似(FCML)演算法估計多變量伯努力混合型的參數。這篇論文主要是將其中EM, CML 及FCML 三種演算法推展至迴歸分析上以形容解釋變數對反應變數的影響。此外，我們只著重於探討二元反應變數的資料，而這也就是潛在類別類別羅吉斯迴歸模型的分析。接著利用電腦生成數值例子並藉由推導出的演算法對潛在類別羅吉斯迴歸模型做參數估計，並討論演算法之數值模擬結果的差異性。
 AbstractMixtures of distributions are used to analyze the grouped categorical data. Theestimation of parameters is an important step for mixture distributions. According toYang and Yu (1999), they described maximum likelihood estimation (MLE) algorithm,expection maximization (EM) algorithm, classification maximum likelihood (CML)algorithm and fuzzy classification maximum likelihood (FCML) algorithm to estimatethe parameters of a mixture of multivariate Bernoulli distributions. In this paper, wewill extend EM, CML and FCML algorithms to regression analysis to describe theeffects of the explanatory variables on the response variable. This paper focus onbinary responses about the logistic regression analysis with a latent class model. Wethen use the extend algorithms to estimate the parameters of the latent class logisticregression model. The numerical comparisons are also made. Finally, we givenumerical results for these algorithms.
 Contents1. Introduction 12. A mixture model of distribution with latent class and fuzzy class 23. Logistic regression model 34. Latent class logistic regression analysis and its algorithm 44.1 A mixture model of logistic regression 54.2 Estimation 84.2.1 EM algorithm 94.2.2 CML algorithm 164.2.3 FCML algorithm 215. Numerical results 266. Conclusions 31References 32
 ReferenceAnderson, T. W. (1954), On estimation of parameters in latent structureanalysis. Psychometrika, 19, 1-10.Agresti, A. (1990), Categorical Data Analysis. New York: Wiley.DeSarbo, W. S., Wedel, M., and Bult, J. R. (1993), A latent class posi-tionregression model for heterogeneous count data. Journal of AppliedEconometrics, 8, 397-411.DeSarbo, W. S. and Wdel, M. (1995), A mixture likelihood approach forgeneralized linear models. Journal of Classification, 12, 21-55.Everitt, B. S. and Hand, D. J. (1981), Finite Mixture Distributions. NewYork: Chapman and Hall.Everitt,B.S. (1984), An Introduction to Latent Variable Models. NewYork: Chapman and Hall.Jobson, J. D. (1992), Applied Multivariate Data Analysis, Vol. 2. Cat-egoricaland Multivariate Methods. New York: Springer-Verlag.Lazarsfeld, P. F. (1950), The logical and mathematical foundation oflatent structure analysis. Psychometrika, 16, 151-166.McCullagh, P. and Nelder, J. A. (1989), Generalized Linear Models. NewYork : Chapman and Hall.McLachlan, G. J. and K. E. Basford (1988), Mixture Models: Inferenceand Aapplications to Clustering. New York: Marcel Dekker.Nelder, J. A. and Wedderburn, R. W. M. (1972), Generalized linearmodels. Journal of the Royal Statistical Society, Series A, 135, 370-384.Yang, M. S. (1993), On a class of fuzzy classification maximum likelihoodprocedures. Fuzzy Sets and Systems, 57, 365-375.Yang, M. S. and Yu, N. Y. (1999), On estimation of parameters in latentclass models using clustering algorithms. (submitted).Zadeh, L. A. (1965), Fuzzy sets. Inform. and control. 8, 338-353.33
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 1 范繼中,廖世平, "熱交換器理論及設計流程",船舶科技,Vol.20, pp.4~5

 1 台灣上市公司之公司治理與公司績效關係之研究─潛在類別分析法 2 國際線航空市場區隔分析 3 潛在類別迴歸模型之適合度檢定 4 類神經網路與羅吉斯迴歸分析方法對於車體損失險出險預測能力之比較 5 潛在類別模型在分析測驗結果的應用 6 連續假期航空旅客搭機日期偏好之研究 7 主題樂園地點與運具選擇之研究 8 購物旅次之迄點選擇模式 9 以潛在類別模式分析影響台灣中老年人之憂鬱因子 10 以潛在類別模式分析台灣地區老年人口認知功能障礙之因素 11 利用羅吉斯迴歸建立上海證券交易所上市公司財務預警模型 12 潛在類別分析與二階段群集分析分群效果之比較研究 13 以潛在類別模式分析台灣已婚婦女生育意願下降之因素 14 使用DNA分子刷印技術於微特徵表面基板之奈米線陣列圖案成形研究 15 預置式線圈感應式動態模具溫控方法建置與分析之研究

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室